Income Inequality, Mobility, and the Accumulation of Capital:

The Role of Heterogeneous Labor Productivity*

Cecilia García-Peñalosa
Aix-Marseille University, Marseille

Stephen J. Turnovsky
University of Washington, Seattle, WA 98195

December 2012

Abstract: We examine the determinants of income inequality and mobility in a Ramsey model with elastic labor supply. Individuals differ both in their initial capital endowment and productive ability (labor endowment). With two sources of heterogeneity, initially poorer agents may catch up with the income and wealth of initial richer ones, implying that the Ramsey model is compatible with rich distributional dynamics. We show that the elasticity of the labor supply plays a key role in the extent of mobility in the economy. Capital-rich individuals supply less labor while ability-rich agents tend to work more. The more elastic the labor supply is, the stronger these effects tend to be and hence the greater is the degree of income mobility.

JEL Classification Numbers: D31, O41

Key words: inequality; income mobility; endogenous labor supply; transitional dynamics.

*This paper benefited from comments received at workshops on macoeconomic dynamics held in Bolzano, Italy, in May 2011, and the 2012 SWIM workshop in Auckland, NZ, as well as seminar presentations at the Free University of Berlin, GREQAM, and Boğaziçi University, Istanbul. García-Peñalosa acknowledges the support of the French National Research Agency Grant ANR-08-BLAN-0245-01, while Turnovsky’s research was supported in part by the Castor endowment at the University of Washington.

Contacts: cecilia.garcia-penalosa@univ-amu.fr and sturn@u.washington.edu
1. Introduction

The Ramsey (1928) model is one of the cornerstones of modern macrodynamics, and has served as an important tool for evaluating the consequences of structural changes and various aspects of economic policy. While the basic model treats all agents as identical – the representative agent paradigm – macroeconomists have increasingly introduced alternative sources of heterogeneity, such as different time discount rates and heterogeneous initial endowments of capital.\footnote{See, for example, Becker (1980), Becker and Foias (1987), Chatterjee (1994), Sorger (2002), Maliar and Maliar (2001), Turnovsky and García-Peñalosa (2008), and García-Peñalosa and Turnovsky (2011).} Using a simple model with inelastic labor supply, Caselli and Ventura (2000) show that if preferences are homothetic the model can also accommodate heterogeneity in ‘labor endowments’, or ability. They demonstrate that the simultaneous introduction of two sources of heterogeneity raises the possibility of wealth and income mobility, meaning that over time less wealthy, but more skilled, agents may overtake wealthier, but less skilled, agents in the distributions of wealth and income.

In this paper we examine the determinants of income mobility in an economy with endogenous labor supply, where agents differ in both their endowments of ability and of physical capital, focusing particularly on the extent to which mobility and inequality move together. Allowing for the endogeneity of labor supply is critical for two reasons. First, as we have shown in previous work, the adjustment of labor (or leisure) to wealth is a key determinant of the distribution of wealth and income.\footnote{See e.g. Turnovsky and García-Peñalosa (2008).} This becomes even more crucial in an economy with skill heterogeneity, where agents of varying skill levels receiving differential wages will have different incentives to adjust their respective labor supplies in response to the evolving returns on capital and labor. Second, the endogeneity of the labor supply implies heterogeneity in work time and hence the distribution of earnings can change with the evolution of macroeconomic aggregates even if the underlying dispersion of abilities is assumed to be constant.

The analytical framework we employ is the one-sector model with endogenous labor supply developed in Turnovsky and García-Peñalosa (2008), to which we add a (time-invariant) initial distribution of labor endowments, as in Maliar, Maliar, and Mora (2005). Representing preferences
by a utility function that is homogeneous in consumption and leisure facilitates aggregation as in Gorman (1953) or Eisenberg (1961), and generates a representative-consumer characterization of the macroeconomic equilibrium, as previous research has shown.\(^3\)

In this context, the relative importance of ability and wealth in an agent’s income depends on the endogenous evolution of factor prices. Moreover, because we assume an endogenous supply of hours of work, labor income will depend not only on the agent’s ability but also on his decision of how much to work. As in our previous work, we show that wealthier agents have a lower marginal utility of wealth, and hence choose to consume more of all goods, including leisure, thus reducing their labor supply.\(^4\) In contrast, more able workers have a higher opportunity cost of leisure, and this creates a positive correlation between individual labor supply and their skill endowment. These two opposing responses create a complex relationship between the agent’s relative income and his supply of labor that will depend on factor prices.

The introduction of two sources of heterogeneity radically alters the implications of existing analyses of heterogeneity in the Ramsey model. In the earlier models with heterogeneous discount rates, the most patient agent ends up holding all the capital, irrespective of policy changes or technology shocks; the distribution of wealth therefore degenerates. When agents differ only in their initial capital endowments, the growth process may expand or contract the distributions of wealth and income, but the ranking of agents remains unchanged. To the contrary, with two sources of heterogeneity, both wealth and income mobility become possible during the transition, and given the prevalence of such mobility in practice, being able to incorporate it in our analysis, in our view, represents a significant advance.

Our results contrast the implications of the two sources of heterogeneity on inequality and mobility. In general, in an expanding economy, heterogeneity arising from initial capital

\(^3\) Without the homogeneity assumption, aggregate behavior and distribution become simultaneously determined and analysis of the transitional dynamics becomes analytically intractable. Examples of departure from this assumption are Krusell and Smith (1998) and Sorger (2002).

endowments will reduce wealth inequality, while heterogeneity due to ability will exacerbate it, and the two sources of heterogeneity also influence income inequality in opposite ways. The extent of mobility in an economy depends both on the type of shock and on the fundamentals. First, in an expanding economy it is the ability-rich that catch-up to those having larger initial capital, implying that in the new steady state distribution those at the top are more likely to be ability-rich than in the original steady state. In contrast, during a contraction it is those with large initial wealth endowments that catch-up and end up having higher incomes than those with greater ability but lesser initial wealth endowments. Second, the elasticity of labor plays a key role in determining the degree of mobility. To understand this, consider an expanding economy in which high ability individuals are upwardly mobile. Their capacity to catch up with wealthier agents depends both on their labor endowment but also on their labor supply, since both determine earnings. A larger elasticity implies a stronger response to own ability, thus increasing their (relative) labor supply and therefore their earnings, thereby facilitating income catch-up.

Our analysis also shows that income inequality and mobility need not move together. The reason for this is the behavior of the aggregate labor supply. The evolution of income inequality is driven by an initial jump in labor and a subsequent gradual adjustment towards its steady state. It is then possible for these two effects to be largely offsetting and lead to small changes in steady state inequality. Conversely, the degree of income mobility depends only on the transition, as it is during that phase that agents may change their relative positions, making it possible for a shock or policy change to induce a small change in steady-state income inequality coupled with a high degree of income mobility.

Our paper contributes to the literature characterizing distributional dynamics in growth models and dating back to Stiglitz (1969). One approach to this question has examined economies with ex-ante identical agents and uninsurable, idiosyncratic shocks, where inequality emerges as a result of these shocks and can persist over time. This class of models has the advantage that it generates the possibility of income mobility, as individual shocks may reverse the relative positions

of agents over time. However, their complexity implies that analytical solutions are not possible and hence the analysis is entirely based on numerical computations. An alternative approach has been to consider economies without shocks in which inequality results from the assumption that agents are initially heterogeneous along a single dimension. Several sources of heterogeneity have been considered, such as different discount rates as in Becker (1980) and Becker and Foias (1987), although recently this literature has focused mainly on differences in initial capital endowments.6

The paper builds on the latter work and examines the so far neglected question of mobility. It makes two main contributions to this literature. The first is that we examine the factors that affect the degree of income mobility in an economy. Although both Caselli and Ventura (2000) and Maliar, Maliar, and Mora (2005) consider simultaneously wealth and ability heterogeneity, thus allowing for the possibility of mobility, neither paper analyzes it, choosing to focus instead on the evolution of inequality. The second novelty of the paper is to combine the introduction of heterogeneous ability with an endogenous supply of labor. In the absence of labor supply responses, the impact of differences in wealth and ability on relative incomes depends only on the shares of capital and labor in aggregate income. In contrast, with endogenous labor the effect of ability is damped or magnified by individuals’ decisions about hours of work, making the labor supply a central element determining the degree of mobility that takes place after a shock.

Following this introduction, Section 2 describes the economy and Section 3 derives the macroeconomic equilibrium. Section 4 characterizes the dynamics of relative wealth and relative income, while Section 5 derives the consequences for wealth and income inequality. These two sections derive the main analytical results. The effects of changes in fundamentals and tax rates on the long-run distributions of wealth and income are then illustrated in Section 6 with a number of numerical examples. Section 7 concludes, while insofar as possible technical details are relegated to an Appendix.

6 See, for example, Chatterjee (1994), Chatterjee and Ravikumar (1999), Maliar and Maliar (2001), Alvarez-Peláez and Diaz (2005), Obiols-Homs and Urrutia (2005), Borissov and Lambrecht (2009), and Bosi, Boucekkine and Seegmuller, (2010), as well as our previous work.
2. The analytical framework

2.1. Consumers

The economy is populated by \(N \) individuals, each indexed by \(i \). There are two sources of heterogeneity: agents’ relative skill levels, denoted by \(a_i \), and their initial endowments of capital, \(K_{i,0} \). By defining \(a_i \) in terms of relative skills, the average economy-wide skill level is simply \(\sum_i a_i / N = 1 \). The heterogeneity of relative skill across agents is described by its (constant) standard deviation, \(\sigma_a \). Relative capital (wealth) is defined by \(k_i(t) \equiv K_i(t) / K(t) \), where \(K(t) \) is the average economy-wide capital stock at time \(t \). At any point of time the relative capital stock has mean 1, while its dispersion across agents is given by the standard deviation, \(\sigma_k(t) \), with the initial (given) dispersion being \(\sigma_{k,0} \). The correlation between initial capital endowments and skills is denoted by \(\chi \), and may be \(\geq 0 \). The initial distribution may be of any arbitrary form, the only restriction being that the largest initial wealth endowment is less than the level, \(\bar{K} \), that would induce that individual to withdraw entirely from the labor market (i.e. supply zero labor).\(^7\)

Each individual is endowed with a unit of time that can be allocated either to leisure, \(l_i \), or to supplying labor, \(1 - l_i \equiv L_i \). The agent maximizes lifetime utility, assumed to be an isoelastic function of consumption and leisure plus an additively separable function of government expenditure

\[
\max \int_0^\infty \left[\frac{1}{\gamma} (C_i(t)l_i(t)^\eta)^{\gamma} + v(G(t)) \right] e^{-\gamma t} dt, \quad \text{with} \quad -\infty < \gamma < 1, \eta > 0, \gamma \eta < 1, \gamma(1+\eta) < 1
\]

(1)

where \(G(t) \) is per capita government expenditure and \(\nu' > 0 \).\(^8\) This maximization is subject to the agent’s capital accumulation constraint

\[
\dot{K}_i(t) = \left[(1 - \tau_k) r(t) - \delta \right] K_i(t) + (1 - \tau_w) w_i(t) (1 - l_i(t)) - C_i(t) - T_i
\]

(2)

where \(r(t) \) is the return to capital, \(w_i(t) \) the wage received by the individual, \(\delta \) the capital

\(^7\) The value of this upper bound can be obtained from the expressions from labor supply and steady state capital that we derive below; see footnote 16.

\(^8\) The assumption of additive separability is made simply for convenience, allowing government spending to have a positive role, without introducing the complications arising from its interaction with private decisions. These have been considered elsewhere, in the case where the only source of heterogeneity arises from initial endowments of capital; see García-Peñalosa and Turnovsky (2011)
depreciation rate, τ_k and τ_w are the tax rates on capital income and labor income, respectively, and T_i are the transfers received by agent i.

2.2. Technology and factor payments

Aggregate output is produced by a single representative firm, using a standard neoclassical production function

$$Y = F(K, L) \quad F_k > 0, F_L > 0, F_{LL} < 0, F_{KK} < 0, F_{LK} > 0$$

where K, L and Y denote respectively the per capita stock of capital, effective labor supply, and per capita output. Since labor productivity is heterogeneous, the effective labor employed by the firm is $L = 1/N \sum_i a_i L_i$. Firms pay capital and labor according to their marginal physical products, so that we can write $r(t) = r(K, L) = F_K(K, L)$ and $w_i(K, L) = a_i w(K, L)$, where $w(t) = w(K, L) = F_L(K, L)$ is the average wage rate and the wage received by agent i, w_i, reflects his skill level. Thus, we immediately see that the distribution of relative wage rates, $w_i(t)/w(t)$, is unchanging and simply reflects the given distribution of skill levels across agents.

2.3. Government

We assume that the government sets its expenditure and transfers as fractions of per capita output, in accordance with $G = gY(t), T = \tau Y(t)$, so that g and τ become the policy variables together with the tax rates. We also assume that it maintains a balanced budget expressed as

$$\tau_k rK + \tau_w wL = G + T = (g + \tau)F(K, L)$$

This means that, if τ_w, τ_k, and g are fixed, as we shall assume, then along the transitional path, as economic activity and the tax/expenditure base is changing, the rate of lump-sum transfers must be continuously adjusted to maintain budget balance. To abstract from any direct distribution effects arising from lump-sum transfers (which are arbitrary), we shall set $T=0$ in steady state, and assume that during the transition $T_i(t)/T(t) = K_i(t)/K(t)$ which ensures that $\int_0^N T_i di = (T/K) \int_0^N K_i di = T$, consistent with the government budget constraint. The role of transfers is then only to ensure a
balanced budget during the transition.

2.4. The macroeconomic equilibrium

Summing \(K_i, l_i \) over all agents, equilibrium in the capital and labor markets is described by

\[
K(t) = \frac{1}{N} \sum_i K_i(t)
\]

(5a)

\[
L(t) = (1 - \Omega l(t)) \quad \text{where} \quad \Omega = \frac{1}{N} \sum_i a_i \rho_i
\]

(5b)

and \(l_i = \rho_i \lambda_i \). The term \(\rho_i \) is the relative leisure of agent \(i \), and which is constant over time, and, \(\sum_i \rho_i / N = 1 \).\(^9\) Assuming that the effective labor supply is positive, \(L(t) > 0 \), (5b) implies \(1 > \Omega l(t) \), where \(\Omega l(t) \) is effective leisure. Thus \(\Omega \) measures the labor lost through leisure, with the losses incurred by each individual being weighted by their level of ability. Moreover, because ability is given and \(\rho_i \) is constant during the transition to a steady state, \(\Omega \) does not change over time, implying that the dynamics of effective leisure, \(\Omega l(t) \), will reflect the dynamics of \(l(t) \).

The derivation of the macroeconomic equilibrium follows Turnovsky and García-Peñalosa (2008) and is briefly summarized in Appendix A.1. There we show that the individual’s first-order optimality conditions imply that all agents will choose the same growth rate for consumption and leisure. As a result, average consumption, \(C \), and average leisure, \(l \), will also grow at the same common growth rates. We also show that the dynamic equations governing aggregate behavior are just those of the standard (aggregate) Ramsey model with endogenous labor supply, implying that the evolution of the aggregate capital stock and labor supply are independent of any distributional characteristics. Assuming that the economy is stable, aggregate quantities converge to a steady state characterized by a constant average per capita capital stock, labor supply, and effective leisure time, denoted by \(\tilde{K}, \tilde{L} \) and \(\Omega \tilde{L} \), respectively. The steady state is summarized by

\[
(1 - \tau_k) F' (\tilde{K}, \tilde{L}) = \beta + \delta
\]

(6a)

\[
(1 - g) F(\tilde{K}, \tilde{L}) - \delta \tilde{K} = (1 - \tau_w) F' (\tilde{K}, \tilde{L}) \frac{(1 - \tilde{L})}{\eta}
\]

(6b)

\(^9\) This follows from the fact that leisure is growing at the same rate for all agents, as shown in Appendix A.1.
\[
\ddot{L} + \Omega \ddot{\Omega} = 1
\]
(6c)

The first two equations jointly determine per capita steady-state values of capital and labor, with \(\Omega \ddot{\Omega} \) being determined by (6c). In fact, (6c) implies only effective, but not average, leisure, which requires knowledge of \(\Omega \) and hence of the distribution of ability across agents.

Rewriting equation (6b) it is possible to show that if the share of private consumption expenditure, \([(1-g) - \delta(\tilde{K}/\tilde{F})]\), exceeds the after-tax share of labor income, \((1-\tau_w)(\tilde{F}_L/\tilde{F})\), then (6b) imposes the restriction \(1/(1+\eta) > \ddot{L} > 0\).\(^\text{10}\) As we will see below, this condition plays a critical role in characterizing the dynamics of the wealth distribution. It can be expressed equivalently as

\[1 > \Omega \ddot{\Omega} > \frac{\eta}{1+\eta}\]
(7)

These inequalities yield an upper (lower) bound on the steady-state time allocation to labor supply (leisure) that is consistent with a sustainable equilibrium.

Lastly, it can be shown that the (locally) stable path for \(\dot{K}(t) \) and \(\dot{L}(t) \) in the neighborhood of steady state can be expressed as \(\dot{K}(t) = \ddot{K} + (K_0 - \ddot{K})e^{\mu t} \) and \(\dot{L}(t) = \ddot{L} + (\mu - b_{11})/b_{12}(K(t) - \ddot{K}) \), where \(\mu < 0 \) is the stable eigenvalue and \(b_{11}, b_{12} \) are defined in (A.7). As we will see below, the evolution of average labor supply over time is an essential determinant of the time path of both inequality and mobility. Since \(b_{12} > 0 \), the stable saddle path is negatively sloped if and only if \(\mu < b_{11} \). This expression reflects two offsetting influences of capital on the dynamics of labor supply. First, a larger capital stock reduces the return to capital and hence to future consumption, thus decreasing desired labor. Second, greater \(K \) increases wages and thus stimulates the growth rate of labor. Which effect dominates depends crucially upon the elasticity of substitution in production, \(\varepsilon \). Condition (A.8) in Appendix A.1 provides a necessary and sufficient condition for \(\mu < b_{11} \) which is easily met for all reasonable parameter values. Henceforth, we shall restrict ourselves to what we view as the more plausible case of a negatively sloped stable locus linking labor supply to capital.

In addition, for expositional convenience we shall focus on situations in which the economy is subject to an expansionary structural shock that results in an increase in the steady-state average

\(^{10}\) This restriction, which we impose, is in fact relatively weak and is satisfied for plausible choices of parameters.
per capita capital stock relative to its initial level \((K_0 < \bar{K})\). From (14b) this will lead to an initial positive jump in labor supply, such that \(L(0) > \bar{L}\), so that thereafter, labor supply will decrease monotonically during the transition; an analogous relationship applies if \(K_0 > \bar{K}\).

3. The dynamics of relative wealth and income

3.1. The relative labor supply

To derive the dynamics of individual \(i\)'s relative capital stock, \(k_i(t) \equiv K_i(t)/K(t)\), we follow Turnovsky and García-Peñalosa (2008), using the individual’s budget constraint (2) together with the aggregate constraint. With transfers set such that \(T_i / K_i = T / K\) this leads to\(^{11}\)

\[
\dot{k}_i(t) = \frac{w(K, L)(1 - \tau)}{K} \left[\left(a_i - a, \rho \right) \frac{1 + \eta}{\eta} - \left(1 - \Omega / \eta \right) k_i(t) \right]
\]

where initial relative capital \(k_{i,0}\) is given from the initial endowment and the aggregate magnitudes \(K\) and \(\Omega l = 1 - L\) change over time.

To solve for the time path of the relative capital stock, we first note that (8) implies the following relationship between agent \(i\)'s allocation of time to labor, his steady-state relative holdings of capital, and his (given) ability:

\[
\tilde{L}_i - \bar{L} = \left(\frac{\tilde{L} - \frac{1}{1 + \eta}}{1 + \eta} \right) \left(\frac{\tilde{k}_i}{a_i} - 1 \right)
\]

for each \(i\) \((9)\)

where \(\tilde{k}_i\) is the steady state relative capital of agent \(i\). Using the definition and constancy of \(\rho_i\), we can show that an analogous equation to (9) holds at all points of time

\[
L_i(t) - L(t) = \frac{l(t)}{l} \left[\tilde{L} - \frac{1}{1 + \eta} \right] \left(\frac{\tilde{k}_i}{a_i} - 1 \right)
\]

\((9')\)

This equation captures one of the critical elements determining the evolution of the distributions of wealth and income and explains why the dynamics of the aggregate quantities are unaffected by distributional aspects. The reason is simply that each agent’s labor supply is a linear function of the

\(^{11}\)For more of the details see Turnovsky and García-Peñalosa (2008) and Appendix A.2. We have also considered an alternative lump-sum transfer rule \(T_i = \bar{T}\), with very minor differences in results from those we are reporting here.
ratio of his relative capital to ability, with this sensitivity being common to all agents and depending upon the aggregate economy-wide labor/leisure allocation. Moreover, recalling (7), equation (9′) implies that the greater this ratio, the more leisure the agent consumes and the less labor he supplies. This has two effects, an equalizing effect that partly offsets the impact of wealth inequality on the distribution of income and an unequalizing effect that magnifies the effect of differences in ability.

Clearly the elasticity of labor plays a key role in determining the relative labor supply responses of agents, as can be seen by (9) and (9′). The direct effect of a larger value of η is to make the agent’s labor supply more responsive to endowments. A higher elasticity of labor will also have an indirect impact through its effect on the aggregate labor supply, \bar{L}, and which, if $d\bar{L}/d\eta < 0$ (as in the case for a Cobb-Douglas), will partially offset the direct impact of η.

3.2. The dynamics of relative wealth, earnings and income

We are interested in the dynamics of three magnitudes: (i) an agent’s relative capital, $k_i(t)$, (ii) his relative income derived from labor (or “earnings”) defined as $y_i^e(t) \equiv a_i w(t) L_i(t)/(w(t)L(t))$, and (iii) his relative total income, which is given by the expression $y_i(t) = s_K(t)k_i(t) + s_L(t)a_iL_i(t)/L(t)$, where $s_K \equiv F_k K/F$, $s_L = 1 - s_K$ denote the shares of capital and labor income.\(^\text{12}\) In Appendix A.2 we show that the dynamics of these three quantities are respectively:

$$k_i(t) = \frac{1 + \theta(t)}{1 + \theta(0)} k_{i,0} + \frac{\theta(0) - \theta(t)}{1 + \theta(0)} a_i$$

$$y_i^e(t) = a_i + \frac{l(t)}{L(t)} \left(\frac{1}{1 + \eta} - \bar{L} \right) \frac{1}{1 + \theta(t)} \frac{a_i - k_i(t)}{L(t)}$$

$$y_i(t) = \phi(t) k_i(t) + (1 - \phi(t)) a_i$$

$$= \phi(t) \left[\frac{1 + \theta(t)}{1 + \theta(0)} k_{i,0} + \left[1 - \phi(t) \frac{1 + \theta(t)}{1 + \theta(0)} \right] a_i \right]$$

where

\(^{12}\) With distortionary taxes, before- and after-tax incomes will generally not coincide. We consider here the evolution of before-tax income, while a discussion of after-tax income can be found in the working paper version of this article.
\[
\theta(0) \equiv \frac{F_L (\tilde{K}, \tilde{L})(1-\tau_w) / \tilde{K}}{F_L (\tilde{K}, \tilde{L})(1-\tau_w) \left[\frac{1+\eta}{\eta} \right] \left(\frac{1}{1+\eta} - \tilde{L} \right)} - \mu \left(\frac{L(0) - \tilde{L}}{1 - \tilde{L}} \right) \tag{13}
\]

\[
\theta(t) = \theta(0)e^{\mu t} \tag{13'}
\]

\[
\varphi(t) \equiv \left[s_k(t) + s_L(t) \frac{l(t)}{L(t)} \left(\tilde{L} - \frac{1}{1+\eta} \right) \frac{1}{1+\theta(t)} \right] \tag{14}
\]

Equations (10) and (12) imply that, as shown by Maliar, Maliar, and Mora (2005), both current wealth and current income are weighted averages of the individual’s endowments of initial wealth and ability. Focusing on the expression for the stock of capital, equations (10) and (13’) imply that the relative weights of the two endowments change over time. This is because as the economy converges to a new steady state, factor prices change, altering the relative contributions of wealth and skill endowments to the individual’s income, and hence to his savings. In an expanding economy, \(L(0) > \tilde{L} \), and from (13) and (13’) we see that \(\theta(0) > \theta(t) > 0 \), \(\dot{\theta}(t) = \mu \theta(t) < 0 \), so that over time the relative weight shifts from the endowment of capital toward skills. How much the relative weights shift depends upon how much, following its initial jump, \(L(t) \) evolves during the subsequent transition. In the extreme case where \(L(0) = \tilde{L} \) jumps immediately to its new steady state, \(\theta(0) = \theta(t) = 0 \) and \(k_i(t) \) remains unchanged at \(k_{i,0} \).

Consider now equation (11) driving the dynamics of earnings. This expression highlights how, whether an agent’s relative earnings exceed or are less than his relative ability, depends on his comparative position in the wealth and ability distributions. If he is more endowed (relatively) in ability, his labor supply will be above average and this will tend to raise his relative earnings. The opposite applies if he is more endowed with capital. Note that if the labor supply were inelastic, relative earnings would be unchanged over time and equal to relative ability.

Lastly, the expression for income indicates that it is determined by both current wealth and ability, with \(\varphi(t) \) representing the weight of the agent’s current relative capital (wealth) in current relative income. In steady state, the share of income due to capital is \(\tilde{\varphi} = 1 - \tilde{s}_k / ((1+\eta)\tilde{L}) \). In our numerical examples with Cobb-Douglas production, \(s_L = 0.67, \eta = 1.75 \), we have \(\tilde{L} = 0.28 \), implying that in the long run 87% of current income is due to skills and 13% to relative capital,
roughly consistent with existing evidence on factor decompositions of household income.\(^\text{13}\)

The elasticity of labor supply plays a key role, and with \(\bar{L} < 1 / (1 + \eta)\), the weight on capital will be smaller than the share of capital \((\varphi(t) < s_K(t))\), while that on ability will be greater than the labor share. This is because of the opposite signs of labor supply responses to increases in wealth and ability seen in equation (9').\(^\text{14}\) In contrast, in Maliar, Maliar, and Mora (2005), the assumption of a constant labor supply and a Cobb-Douglas production function imply that the weights of current wealth and ability in income are always equal to the (constant) aggregate capital and labor shares. Hence, relative income changes only as a result of changes in relative capital and monotonically increases or decreases during the transition. Our more general assumptions concerning the elasticity of utility with respect to labor and the elasticity of substitution in production imply that relative income also varies with labor supply reactions and changes in factor prices.

In Appendix A.3 we summarize the dynamics of relative income, showing how they depend upon two factors. The first is the gap between the agent’s initial endowments of skills and physical capital, the second is the change in aggregate labor (leisure). The effect of endowments, in turn, is determined by the evolution of factor prices and hence depends crucially on the elasticity of substitution in production, while the labor supply response comprises both the initial response and the dynamics along the transitional path.\(^\text{15}\) Allowing for an endogenous labor supply has important consequences. In its absence, both relative wealth and income change only slowly as the capital stock converges to its new steady state. With endogenous labor we can see from inspection of equation (14) that, following a shock, \(\varphi(t)\) will jump as a result of the jump in labor induced by the shock. Relative income may hence change substantially on impact in response to the new factor prices, even if relative wealth changes only slowly.

\[^{13}\] See, for example, García-Peñalosa and Orgiazzi (2011).

\[^{14}\] Although we cannot rule out \(\varphi(t) < 0\) at some point along the transitional path, in steady state \(0 < \bar{\varphi} < \bar{s}_K\) if and only if, \(1/(1 + \eta) > \bar{L} > \bar{s}_K / (1 + \eta)\) a condition that is met for the benchmark calibrations below. Note also that we can write \(y_i^*(t) = (1 - s_K)^{-1} \left\{ (\varphi - s_K) k_i(t) + (1 - \varphi) a_i \right\}\). With \(\varphi < s_K\) the agent’s relative wealth has a negative effect on relative earnings, in contrast to the positive effect it has on total relative income. As a result, earnings inequality evolves very differently from income inequality, as our numerical simulations illustrate.

\[^{15}\] More details on the dynamic response of relative income can be found in Turnovsky and García-Peñalosa (2008) and García-Peñalosa and Turnovsky (2011). The qualitative effects are the same with or without ability differences.
3.3 Wealth and income mobility

We can now consider the possibility of mobility both in wealth and income. To understand the source of the potential for agents to change their relative wealth positions, we write the difference between an agent’s long-run relative capital and the mean as

\[
\Delta k_i = \frac{1}{1 + \theta(0)}(k_{i,0} - 1) + \left(\frac{\theta(0)}{1 + \theta(0)}\right)(a_i - 1) = \frac{1}{1 + \theta(t)}[(k_i(t) - 1) + \theta(t)(a_i - 1)]
\]

(15)

From these expressions we see that if an agent begins with above-average capital (i.e. \(k_{i,0} > 1\)), but is endowed with below-average skills (i.e. \(a_i < 1\)), he may end up with below-average capital. This is because there are two offsetting forces driving the accumulation of capital.\(^{16}\) On the one hand, individuals with large initial wealth accumulate capital more slowly (during an expansion), which tends to deteriorate their relative position. On the other hand, those having more ability have higher incomes, ceteris paribus, and hence accumulate more capital, which tends to improve their relative position. As a result, the potential for wealth mobility exists.

Compare now two individuals \(i, j\), and express their wealth gap at time \(t\) as

\[
k_i(t) - k_j(t) = \frac{1 + \theta(t)}{1 + \theta(0)} \Delta k + \frac{\theta(0) - \theta(t)}{1 + \theta(0)} \Delta a
\]

(16)

where \(\Delta a \equiv a_i - a_j\) and \(\Delta k \equiv k_{i,0} - k_{j,0}\). This expression indicates that there are two offsetting forces influencing this gap, the differences in initial capital and the differences in ability. In a growing economy, \(\theta(0) > \theta(t)\), \(\dot{\theta}(t) < 0\), implying that the term multiplying the capital gap is less than one and declining over time. As in Turnovsky and García-Peñalosa (2008), when the economy is accumulating capital, savings behavior and the dynamics of factor returns reduce capital inequality. At the same time, the coefficient on the skill gap is positive and growing over time, and this tends to increase wealth differentials. This is because the more able agents have higher labor incomes and will accumulate capital faster than those having lesser ability.

\(^{16}\) This expression can be used, together with the individual’s budget constraint, to show that for all agents to supply a strictly positive amount of labor in the steady state the initial distribution of capital must be such that an agent with ability \(a_i\) has an endowment below \(\bar{k} = a_i [(1 + \theta_0) s_L / (\eta L s_L) - \theta_0]\).
From (16) and (13’), the initially less wealthy individual, agent \(j \) say, will catch up to the richer one, agent \(i \), at time \(\hat{t} \), determined by

\[
\hat{t} = \frac{1}{\mu} \ln \left(\frac{(a_i - a_j) + (k_{i,0} - k_{j,0})/\theta(0)}{(a_i - a_j) - (k_{i,0} - k_{j,0})} \right)
\]

Clearly, catch-up will occur if and only if \(\hat{t} > 0 \), enabling us to state:

Proposition 1: In an economy that is accumulating capital \([\theta(0) > 0]\),

(i) if individual \(j \) is initially endowed with less wealth than is individual \(i \), the poorer agent will catch up in wealth if and only if \(-\Delta a \cdot \theta(0) > \Delta k \);

(ii) if individual \(j \) is initially endowed with both less wealth and less ability than individual \(i \), the poorer agent will never catch up.

Proof: See Appendix A.4.

This proposition indicates that the poorer agent will catch up in wealth if and only if he has sufficiently superior ability. It captures the conflict between the two forces discussed above: both more wealth and greater ability imply, other things equal, higher income and more savings. An initially less wealthy individual can catch up only if he is sufficiently able, so that he accumulates faster than does the wealthier, but less able, individual. If in addition to having less capital he also has less ability, he will never catch up.

With income subject to an initial jump, the potential for income mobility is more complex in that if it occurs, it may do so on impact, or along the subsequent transitional path. To examine this further, we compare two individuals \(i, j \), in an initial steady state, where \(i \) has greater initial income, i.e. \(y_{i,0} > y_{j,0} \). Thus, in the initial equilibrium \(y_{i,0} - y_{j,0} = \tilde{\phi}_0 (k_{i,0} - k_{j,0}) + (1 - \tilde{\phi}_0) (a_i - a_j) > 0 \), where \(\tilde{\phi}_0 \equiv 1 - \left(\tilde{s}_{L,0}/\tilde{L}_0 \right) \left(1/(1+\eta) \right) \). Clearly, \(i \) may have higher initial income either because he has more ability than \(j \), because he is initially wealthier, or both, but having more initial wealth, alone, does not suffice to ensure higher income.

There are two ways in which a shock can result in income catch-up. If \(y_i(0) < y_j(0) \), then following a shock agent \(j \) immediately overtakes agent \(i \) in income. Alternatively, if \(y_i(0) > y_j(0) \)
and \(\bar{y}_i < \bar{y}_j \), agent \(j \) overtakes agent \(i \) along the transition. Since instantaneous catch-up is unlikely, we shall focus attention on the more plausible case where it occurs along the transitional path. The following proposition specifies the circumstance under which such mobility is possible:

Proposition 2: Individual \(i \) may initially be richer than individual \(j \) because of higher initial wealth, higher ability, or both. If that is the case, then

(i) if \(i \) has a larger endowment both of ability and wealth, \(j \) cannot catch up to \(i \)'s income level;

(ii) if individual \(j \) is initially endowed with less wealth than is individual \(i \), the poorer agent will catch up in income along the transitional path if and only if

\[
\frac{\tilde{\phi}}{1 + \theta(0) - \tilde{\phi}} < -\frac{\Delta a}{\Delta k} < \frac{\varphi(0)}{1 - \varphi(0)}
\]

(18a)

and the economy satisfies \(\varphi(0) > \tilde{\phi} / (1 + \theta(0)) \);

(iii) if individual \(j \) is initially endowed with less skill than is individual \(i \), the poorer agent will catch up in income if and only

\[
\frac{\tilde{\phi}}{1 + \theta(0) - \tilde{\phi}} > -\frac{\Delta a}{\Delta k} > \frac{\varphi(0)}{1 - \varphi(0)}
\]

(18b)

and the economy satisfies \(\varphi(0) < \tilde{\phi} / (1 + \theta(0)) \).

Proof: See Appendix A.4.

Proposition 2 indicates that, as the economy converges to a new steady state, income mobility is possible for only one type of agent, either the skill-rich or the capital-rich, but not both. This is because income mobility depends on the behavior of factor prices. If wages are growing fast, then skill-rich agents will be able to catch-up but capital-rich individuals will not, and vice versa. The behavior of factor prices will, in turn, depend on both the structure of the aggregate economy and the nature of the shock, which is captured by the sign of \([\varphi(0) - \tilde{\phi} / (1 + \theta(0))] \). For the Cobb-Douglas production function, in a growing economy \(\varphi(0) > \tilde{\phi} / (1 + \theta(0)) \) always holds. It is then the skill-rich that may catch up in income; in contrast to a contracting economy when it is the capital-
rich for whom this is possible.

Note that equation (18a) has a simple interpretation. The right-hand side inequality is the condition for the wealthy individual to have a higher initial income, and simply requires that agent j does not have a sufficiently high skill endowment, relative to the initial wealth gap. The left-hand side inequality says that, given that i has initially higher income, j can catch-up only if his ability gap is sufficiently high. Similarly, from equation (18b) we can see that the right-hand inequality is the condition for i to be initially richer, and the left-hand inequality asserts that mobility can occur only if, given the initial wealth gap, the ability gap is not too large.

We can now specify measures of wealth and income mobility in the economy.

Definition 1. Let $\Delta \hat{a}$ be the minimum ability gap required for j to catch up to i’s wealth, given their initial wealth gap, Δk. We then define the extent of wealth mobility, denoted ω_k, as $\omega_k \equiv -(\Delta \hat{a} / \Delta k)^{-1}$.

Our measure of wealth mobility is the inverse of the minimum ability gap required for catch-up. That is, the larger the ability gap required in order to catch up to a given wealth gap, the less is mobility. Using (16) we obtain

$$\omega_k = \theta(0) = \frac{F_L(\hat{K})(1-\tau_w)/\hat{K}}{K} \left(1+\frac{1}{1+\eta}-\hat{L}\right) - \mu \left(L(0)-\hat{L}\right).$$

(19)

The degree of wealth mobility depends on both the structural characteristics of the aggregate economy and the specific change generating the initial jump in aggregate labor supply. From (15), we see that a larger weight of ability in an agent’s steady-state relative wealth will be associated with greater wealth mobility.

Definition 2. Let $\Delta \widetilde{a}$ (alternatively $\Delta \widetilde{k}$) be the minimum ability (wealth) gap

17 While this measure is very natural in our context, it is not the measure of mobility commonly found in the literature. Both sociologists and economists usually examine mobility across successive generations, and define it as the probability that an individual is in an income/wealth class above that of his parents; see Piketty (2000) for a survey. In our model, agents are infinitely-lived which does not allow us to use such a measure.
required for \(j \) to catch-up in income when it is the ability-rich (capital-rich) that may experience income mobility. Whenever the skill-rich can catch-up with the capital-rich, we define the measure of income mobility to be \(\omega_y^a = -\left(\Delta \bar{a} / \Delta k\right)^{-1} \); whenever it is the capital-rich that are catching up, we define it to be \(\omega_y^k = -\left(\Delta k / \Delta a\right)^{-1} \).

Our definition implies that we measure the degree of income mobility by the endowment gap required for the poorer agent to be able to catch up to the richer one during the transition, where income mobility depends on which agent is doing the catching up. From the definitions of \(\omega_y^a \) and \(\omega_y^k \) we can write

\[
\omega_y^a = \frac{1 + \theta(0) - \bar{\phi}}{\bar{\phi}} \quad (20a)
\]

\[
\omega_y^k = \frac{\bar{\phi}}{1 + \theta(0) - \bar{\phi}} \quad (20b)
\]

A higher value of \(\omega_y^a \) or \(\omega_y^k \) implies that, for given distributions of initial wealth and skills, a greater fraction of the population will change their relative position along the distribution of income. Considering Proposition 1 in conjunction with Proposition 2 enables us to state:

Proposition 3: In a growing economy if agent \(i \) catches up to agent \(j \)’s level of wealth he will do so only after he has caught up to agent \(j \)’s level of income. It is also possible that he will catch up to his level of income, but not to his level of wealth.

Proof: See Appendix A.4.

The intuition of Proposition 3 is straightforward. Since agents save a fraction of their income strictly less than one and given that \(i \) had a higher initial stock of capital, \(j \) will manage to accumulate as much wealth as \(i \) only if he has a higher level of income. Hence, he must catch up \(i \)’s income level before he can catch-up to his wealth.

5. **Wealth and income inequality**

Because of the linearity of the expressions for relative wealth, (10), we can immediately
transform these expressions into corresponding measures of aggregate wealth inequality. There are several such measures, each having its advantages and drawbacks, while yielding similar qualitative implications. One natural inequality measure is in terms of relative deviations, \(\sigma_k \), essentially the coefficient of variation (CV) – which is dimensionally equivalent to the widely used Gini coefficient. But with more than one source of inequality, as we have here, it may be useful to decompose it into its underlying components, for which neither the CV nor Gini are convenient. In this case, the squared coefficient of variation (SCV), \(\sigma_k^2 \), is a natural member of the class of decomposable inequality measures identified by Bourguignon (1979) and hence is the measure that we shall employ.

Thus, recalling (10) and the definitions of \(\sigma_{k,0} \) (initial distribution of capital) and \(\sigma_a \) (distribution of skills), we can write \(\sigma_k^2(t) \) as

\[
\sigma_k^2(t) = \frac{1}{[1 + \theta(0)]^2} \left([1 + \theta(t)]^2 \sigma_{k,0}^2 + [\theta(0) - \theta(t)]^2 \sigma_a^2 + 2(1 + \theta(t))[\theta(0) - \theta(t)]\sigma_{k,0} \sigma_a \chi \right) \tag{21}
\]

where \(\chi \) is the correlation coefficient between initial capital endowments and skills. Letting \(t \to \infty \) in (21) yields

\[
\tilde{\sigma}_k^2 = \frac{1}{[1 + \theta(0)]^2} \left(\sigma_{k,0}^2 + \theta^2(0) \sigma_a^2 + 2\theta(0) \sigma_{k,0} \sigma_a \chi \right) \tag{22}
\]

From these expressions we see that in an economy that is accumulating capital as a result of an expansionary external shock, wealth inequality may increase or decrease, depending upon the relative dispersions of the initial endowments of capital and skills and their correlation. Note also that wealth inequality can emerge from differences in skill endowments alone, i.e. if \(\sigma_{k,0} = 0 \). In that case, any structural shock induces transitional dynamics during which agents accumulate capital at different rates. Those with higher ability will accumulate capital faster and hence the new steady state will be one of wealth inequality. The effect of relative skill endowments depends crucially upon \(\theta(0) \), which in turn depends upon how close labor supply jumps to its steady-state.

Analogously, we can express income inequality in terms of its SCV. Using equation (14) and defining \(\phi(t) \equiv \varphi(t)(1 + \theta(t))/(1 + \theta(0)) \), the SCV of (pre-tax) income can be written as
\[\sigma_y^2(t) = \phi(t)^2 \sigma_{k,0}^2 + (1 - \phi(t))^2 \sigma_a^2 + 2 \phi(t)(1 - \phi(t)) \sigma_{k,0} \sigma_a \chi \]

(23)

Consider now an economy that is initially in steady state and is subject to a structural change. The changes in income inequality between the two steady states is given by

\[
\tilde{\sigma}_y^2 - \sigma_{y,0}^2 = \left(\frac{\tilde{\phi}}{1 + \theta(0)} - \tilde{\phi}_0 \right) \left\{ \left(\frac{\tilde{\phi}}{1 + \theta(0)} + \tilde{\phi}_0 \right) \left[\sigma_{k,0}^2 + \sigma_a^2 - 2 \sigma_{k,0} \sigma_a \chi \right] - \frac{1}{1 + \omega_y^2} + \tilde{\phi}_0 \left[\sigma_{k,0}^2 + \sigma_a^2 - 2 \sigma_{k,0} \sigma_a \chi \right] \right\}
\]

(24)

where \(\tilde{\phi}_0 \) and \(\tilde{\phi} \) are, respectively, the values of \(\phi(t) \) in the initial and in the new steady states. The overall change in income inequality is the result of the change immediately following the shock and caused by the reaction of factor prices and the labor supply, and the change along the subsequent transitional path to the new steady state are. Although it is not possible to sign these changes in general, results can be obtained in the case of Cobb-Douglas production. In this case, it is possible to show that if the economy experiences an expansionary external shock that leads to an accumulation of capital and does not cause a long-run decline in employment, income inequality initially increases and then declines unambiguously during the transitional phase whenever \(\sigma_a = 0 \), while it initially declines and then increases unambiguously during the transitional phase for \(\sigma_{k,0} = 0 \).

The final aspect we consider is the relationship between income inequality and mobility. Using (20) and (23) we can express the change in income inequality following a shock as

\[
\tilde{\sigma}_y^2 - \sigma_{y,0}^2 = \left(\frac{1}{1 + \omega_y^2} - \tilde{\phi}_0 \right) \left\{ \left(\frac{1}{1 + \omega_y^2} + \tilde{\phi}_0 \right) \left[\sigma_{k,0}^2 + \sigma_a^2 - 2 \sigma_{k,0} \sigma_a \chi \right] - \frac{1}{1 + \omega_y^2} + \tilde{\phi}_0 \left[\sigma_{k,0}^2 + \sigma_a^2 - 2 \sigma_{k,0} \sigma_a \chi \right] \right\}
\]

(25)

The interesting implication of this equation is that inequality and mobility need not move together. It is possible for a shock to generate substantial income mobility (i.e. result in a large value of \(\omega_y^2 \)) and yet engender small changes in inequality, which would occur if \([1/(1 + \omega_y^2) - \tilde{\phi}_0] \) is close to zero. The intuition for this result is that shocks, by affecting factor prices, change who is at the top of the income distribution. A shock that results in a large increase in wages and a large reduction in the interest rate would give rise to substantial mobility. At the same time, because ability is unequally distributed, the increase in the wage would imply an increase in earnings inequality thus offsetting
the equalizing effect that a reduction in the interest rate has. If the increase in earnings dispersion is sufficiently large, high mobility could even be associated with greater income inequality, as captured by the non-monotonicity of the expression in (25) with respect to \(\omega^\mu \). In other words, equation (25) implies that high mobility can be associated with increases or decreases in inequality, and that a given change in steady-state inequality may be accompanied by different degrees of mobility.

6. Numerical Simulations

To obtain further insights into the dynamics of wealth and income distribution we employ numerical simulations. These are based on the following functional form and parameter values, characterizing the benchmark economy:

<table>
<thead>
<tr>
<th>Production function:</th>
<th>(Y = A \left(\alpha K^{-\rho} + (1-\alpha)L^{-\rho} \right)^{1/\rho})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic parameters:</td>
<td>(A = 1.5, \alpha = 0.33)</td>
</tr>
<tr>
<td></td>
<td>(\rho = 0) (elast. of sub. (\varepsilon = 1))</td>
</tr>
<tr>
<td></td>
<td>(\beta = 0.04, \gamma = -1.5, \eta = 1.75, \delta = 0.07)</td>
</tr>
<tr>
<td>Fiscal parameters:</td>
<td>(\tau_k = \tau_w = g = 0.22)</td>
</tr>
<tr>
<td>Distributions:</td>
<td>(\sigma^2_{k0} = 14, \sigma^2_u = 0.4, \chi = 0.33)</td>
</tr>
</tbody>
</table>

Preferences are summarized by an intertemporal elasticity of substitution \(1/(1-\gamma) = 0.4 \), rate of time preference of 4\%, while the benchmark elasticity of leisure in utility is 1.75. The production function is CES with distributional parameter \(\alpha = 0.33 \) and with an elasticity of substitution, \(\varepsilon = 1/(1+\rho) \), of 1, while \(A = 1.5 \) scales the level of productivity.\(^18\) The depreciation rate is 7\% per annum.\(^19\) These parameters are all standard and typical of those found in the literature.\(^20\)

The choice of tax rates is less straightforward and has generated debate, due to the difficulty

\(^{18}\) Berndt’s (1976) finds estimates of the elasticity of substitution to range from around 0.8 to 1.2. However, more recent authors have argued that the treatment of technological change has biased the estimates toward unity, and that modifying the econometric specification leads to significantly lower estimates of the elasticity, in the range 0.5-0.7; see e.g. Antràs (2004), Klump, McAdam, and Willman (2004). Duffy and Papageorgiou (2000) estimate the elasticity of substitution using cross-sectional data and find that the Cobb-Douglas production function is an inadequate representation of technology. Their evidence suggests that the elasticity of substitution exceeds unity for rich countries, but is less than unity for developing countries. By letting \(\varepsilon \) range between 0.75-1.15 we are covering most of the plausible estimates.

\(^{19}\) For simplicity we assume that depreciation costs are not tax deductible.

\(^{20}\) For example, the intertemporal elasticity of substitution of 0.4 is well within the range summarized by Guvenen (2006), while the relative weight on leisure in utility is close to the conventional value of the real business cycle literature; see Cooley (1995). The production elasticity \(\alpha = 0.33 \) is also well within the conventional range.
of mapping the complexities of the real world tax structure into a simple one-sector growth model. Recently, McDaniel (2007) has computed effective tax rates that can be readily used in macroeconomic models. Her tax rates indicate substantial fluctuations of tax rates in the US, with the tax rate on capital and labor income varying within the rather wide range of 15% to 30%. In our benchmark numerical examples we set a uniform tax on the two types of income of 22%, even though the two tax rates have tended to differ. This has the advantage that the tax system has no direct distributive effects (i.e. pre- and post-tax inequality are the same) and hence we can focus on the indirect distributive effects caused by changes in factor rewards. Later we consider how differences between tax rates affect distribution. Finally, we set the government consumption expenditure rate at $g = 0.22$, implying that it is entirely financed by the income tax.

We also require estimates of the distributions of ability and initial wealth, together with their correlation. To choose these we use the figures reported in García-Peñalosa and Orgiazzi (2011), who decompose overall income inequality into its factor components. For the US, their figures give dispersions (as measured by the SCV) for capital of 13.17, for earnings of 0.93, and for gross income of 0.58, for the year 1979. In 2004 these three inequality measures were, respectively, 16.10, 1.34, and 0.82, capturing the well-known increase in both income and earnings inequality. We set $\sigma_k^2 = 14$ which approximates the large dispersion of capital income observed in the data. The dispersion of ability is assumed to be $\sigma_a^2 = 0.4$ and the initial correlation of the two endowments is set at $\chi = 0.33$. As can be seen in Table 1, for both the benchmark case and that of a “low” elasticity of leisure, $\eta = 1$, these parameters will generate dispersions of wealth, earnings and income of the same magnitudes as those observed in the data.

Table 1 reports the benchmark steady-state equilibrium (shown in bold) for the chosen parameters, as well as the long-run responses to changes in technology and preferences. The benchmark case is reported in the first panel. There we see that the baseline setup, reported on the first line, yields an equilibrium allocation of labor of 27.7%. The dispersion of earnings is 1.422 and that of income 0.676. The second panel reports the case of a low elasticity of leisure ($\eta = 1$). The

21 See also Sierminska, Brandolini and Smeeding (2006) for recent estimates of the distribution of wealth. They obtain Gini coefficients, a different inequality index that tends to give less weight to extreme observations.
dispersion of earnings is now much smaller, 0.990, as a result of weaker labor supply responses. Recall that those endowed with higher ability tend to work more, thus making earnings more dispersed than ability. Since the impact of ability on working time is now smaller, so is earnings inequality. In contrast, income inequality is greater than in the benchmark case, assuming a value of 0.875. The reason for this is the equalizing effect of labor supply reactions to wealth differences. As we have seen, richer agents tend to work less, which reduces, other things constant, their earnings and hence their income. With a lower elasticity of labor, this response is milder and thus ‘less equalizing’.

The first line of the third panel indicates that with a higher elasticity of substitution in production (\(\varepsilon = 1.15 \)) the labor supply is lower than in the benchmark case, 0.256, which results in a greater degree of income inequality since, as we have seen, a lower labor supply results in greater dispersion of working hours and hence of earnings; see equation (11). For the same distributions of ability and initial wealth, we find a dispersion of earnings of 2.534 and of income of 0.779. The former is 65 percent higher than in the benchmark, but the increase in income inequality is much smaller due to the positive correlation between leisure and wealth. The level of earnings inequality is implausibly large, the reason for this is that earnings inequality is very sensitive to \(\varepsilon \) and that we have chosen the distribution of ability to match the data for low values of \(\varepsilon \).

We now consider some examples of shocks and how they affect distribution and mobility. We begin by examining the impact of a productivity increase and then consider changes in the fiscal structure.\(^{22}\)

6.1. Increase in the level of technology

Consider first the effect of a technological shock, parameterized by an increase in productivity \(A \) from 1.5 to 2. As noted previously, the transitional adjustment of \(\tilde{L} - L(0) \) is a critical determinant of the response of wealth inequality, hence both the initial response and the steady state value of labor are reported. The last two columns of all three panels report our measures of mobility following a shock.

\(^{22}\) The formal expressions describing the responses of the aggregates are provided in Appendix A.5.
In all cases, steady state capital and output increase, while the labor supply is lower than or (in the case of a Cobb-Douglas) the same as in the initial equilibrium. In all cases there is an increase of labor on impact, with the labor supply then falling until it reaches its new steady state. With the dispersion of wealth endowment dominating that of ability, the transitional adjustment of labor supply leads to a long-run, gradual and monotonic reduction in wealth inequality, consistent with (21). Moreover, with most of the adjustment in employment taking place on impact, we see from the three panels that in all cases the changes in the distribution of wealth that occur during the transition are also moderate, with the eventual reduction of wealth inequality ranging from 1.28% to 3.03%.\footnote{23} Because of the moderate changes in wealth accumulation that occur during the transition, wealth mobility is extremely low. Recalling our definition of wealth mobility, $\omega_k = -\Delta k / \Delta \hat{a}$, the figure of 0.016 for the Cobb-Douglas case implies that for agent j (the more able individual) to catch up with the wealth of agent i (the initially wealthier agent) their gap in wealth must be less than 0.016 of their ability gap. In other words, the ability gap of j with respect to i has to be at least 62 times as large as their initial wealth gap!

In contrast to wealth inequality, earnings and income inequality and the degree of income mobility are highly sensitive to the preference and production parameters. Consider first the case of a Cobb-Douglas production function reported in the top two panels. In this case neither the labor supply nor factor shares change, and hence all distributional changes are due to the evolution of the distribution of wealth and to differential labor supply response across agents. In both cases, the productivity shock results in a reduction in both earnings and income inequality of rather similar magnitudes (earnings fall by between 2 and 2.5 percent, while income inequality falls by between 1.1 and 1.4 percent).

There are nevertheless substantial differences in terms of income mobility with a high elasticity of labor resulting in a much higher degree of mobility than in the case of a low elasticity (7.471 and 5.157, respectively). Our results for ω_y indicate that, for our benchmark case, agent j will catch up the income of all those agents who were initially richer and for whom the wealth gap

\footnote{The fact that most of the adjustment in labor supply occurs on impact is characteristic of this class of model; see Turnovsky (2004). It reflects the fact that there is no cost to adjusting labor supply.}
between the two is less than 7.471 times their ability gap. In the case of a low labor elasticity the corresponding figure for mobility is 5.157. Although this number still implies high mobility, it is substantially lower than in the case of $\eta = 1.75$. The intuition can be obtained from equation (20’). Mobility is possible because of heterogeneity in ability, and the direct effect of ability is reinforced by the fact that more able agents also supply more labor. With a low elasticity, there is a weak response of individuals’ labor supplies to ability. As a result it is harder for the ability-rich to catch up and mobility is low; a higher elasticity implies a stronger labor supply reaction thus reinforcing the direct effect of ability and making it easier to catch up in income.

The bottom panel considers the case of a high elasticity of substitution in production, $\varepsilon = 1.15$. In this case the long-run effect of the shock on income inequality is reversed, with inequality increasing by 3.1%. The reason for this is the labor supply: the reduction in the labor supply results in a sharp increase in wages and thus in earnings inequality which more than offsets the falling wealth inequality, as a result income inequality increases. The last two columns report the mobility measures. Faster convergence implies lower wealth and income mobility than in the benchmark case. Note, however, that income mobility is 5.662, i.e. roughly of the same magnitude as in the case of Cobb-Douglas production and low elasticity of labor. Comparing the two bottom panels we can derive two conclusions. First, a similar degree of mobility can be compatible with a reduction in income inequality (case of $\varepsilon = 1$ and $\eta = 1$) as well as with an increase in inequality (case of $\varepsilon = 1.15$ and $\eta = 1.75$). Second, low mobility (relative to the benchmark) can be the result of either of two effects. A low elasticity of labor tends to reduce mobility because it implies a small labor supply response to ability, and hence lower differences in earnings between those with different degrees of ability. Alternatively, it can be the result of a high elasticity of substitution in production, since with a higher elasticity, factor prices are less responsive to changes in the capital-labor ratio. As a result, the wage (interest rate) declines (increases) more in response to the shock, making income more sensitive to ability and less so to wealth endowments.

6.2 Tax changes and mobility

The effects of fiscal changes are reported in the three panels of Table 2, corresponding to the
benchmark case as well as those with low elasticity of labor supply and high elasticity of substitution in production. In all cases line 1 in each panel reports the magnitudes for the initial steady state.

As a first example of the distributional dynamics arising from a change in the fiscal structure, we consider the effect of a balanced reduction in the (common) tax and expenditure rates from 22% to 17%. The aggregate responses are qualitatively identical to those resulting from an increase in the level of technology. In all three cases the changes in wealth inequality are extremely small, in line with our previous work where we found that the transitional dynamics following a tax change are much milder than those after a productivity change; see García-Peñalosa and Turnovsky (2011). In contrast, both earnings and income inequality may exhibit substantial changes once we move away from the Cobb-Douglas case. Despite much smaller changes in inequality, the degree of income mobility is about the same as that generated by a productivity change. This is the result of the direct impact of tax changes on income and labor supply, which is absent in the case of a productivity change. The consequence of this is that although the reduction in taxes has a small impact on income inequality, those at the top of the income distribution are more likely to be ability-rich than they were before the tax reduction.

Our second exercise is to consider the effects of changing the tax structure to finance a given rate of expenditure, g. These effects are summarized in the third and fourth lines of the three panels in Table 2. We consider two initially identical economies with uniform tax rates, $\tau_c = \tau_r = g = 0.22$, and suppose that they shift their respective tax burdens in opposite directions. One reduces the tax on capital income by 5 percentage points, from 22% to 17%, offsetting this with an appropriate increase in the tax on labor income. The other reduces the labor income tax by the same magnitude, from 22% to 17%, and compensates this by a higher capital income tax. Since the share of labor is much higher than that of capital, in the first case the required increase in the labor tax is mild (between 2 and 4 percentage points), while in the second case capital income taxes increase sharply (up to 32% in the case of a low elasticity of labor).

24 Tax structures, and not just tax rates, differ substantially across countries, as documented by McDaniel (2007). Her results indicate that a key feature of the US economy is $r_c > r_r$, a characteristic that holds uniformly since 1953. For example, average values of these tax rates for the decade 1991-2000 were $r_c = 0.276$ and $r_r = 0.224$. In contrast, European economies have tended to have a higher effective tax rate of labor than on capital.
The aggregate effects of such compensated tax changes have been extensively studied, and are summarized in Appendix A.4.25 There we see that substituting a tax on labor income for a tax on capital income will reduce long-run employment, while increasing the long-run capital stock, and output (and consumption). Since $\tilde{K} > K_0$, then $L(0) > \tilde{L}$ (slightly) and hence we have $\theta(0) > 0$ and $\tilde{\phi} < \phi(0)$. In addition, the fact that labor declines in the long run implies that $\tilde{L} < L_0$. The opposite occurs when the capital tax substitutes for a labor tax.

The distributional responses are substantial, certainly much larger than the responses to an increase in the common income tax rate, the reason being that they elicit sharp labor supply responses.26 Several general results emerge. First, wealth responses are mild, and wealth mobility requires phenomenally large ability gaps. Second, wealth and earnings inequality move in opposite directions. This is the result of the opposite effects of tax changes on capital and labor. For example, the reduction in the tax on capital income increase the steady-state capital stock and during the transition wealth inequality becomes less dispersed. At the same time, the tax change reduces the labor supply, increasing the dispersion of earnings. These two forces have opposite effects on the distribution of income. Third, the economy with the low capital income tax exhibits much lower income inequality than that with the high capital income tax. Although it seems puzzling that lower earnings inequality is associated with higher income inequality, the force driving this result is the negative correlation between wealth dispersion and labor supply dispersion for a given level of ability. As a result, inequality in earnings partly offsets the inequality in capital incomes, and the greater earnings dispersion is, the lower income inequality becomes. In our tax exercise, a reduction in the capital income tax results in both lower capital income inequality and a more dispersed distribution of earnings (which has an equalizing effect), thus leading to lower income inequality. The opposite happens in the case of an increase in the capital income tax.

Lastly, inequality and mobility move together. In order to see this, consider the Cobb-

25 See Chamley (1986) and Judd (1985) for early analyses that concluded that capital income should not be taxed and Prescott (2004) and Turnovsky (2004), among others, for the effects of taxation on labor supply responses.

26 Using the “idiosyncratic shock model” to generate inequality, Domeij and Heathcote (2004) reach a similar qualitative conclusion regarding the effect of reducing capital income taxes, suggesting that changing the balance between capital and income taxes is likely to have very significant distributional consequences insofar as welfare inequality is concerned. Although space limitations preclude us from investigating welfare issues, it is a direction in which the present analysis could easily be extended, using the approach of García-Penalosa and Turnovsky (2011).
Douglas case with $\eta = 1.75$. The economy with the low tax on capital exhibits a level of income inequality of 0.601 and income mobility of 9.106. This last figure implies that agent i will catch up with agent j if their ability gap is 11% or more of their wealth gap. For the economy with a high capital tax, inequality is greater (0.847) and poor agents need more ability in order to catch up in income – at least 19% of the wealth gap, corresponding to mobility of 5.281.

Similar relationships appear in the case of our other parameters. Note, however, that there are significant differences in income mobility across the three panels. With a high elasticity of labor, the degree of mobility responds sharply to the type of fiscal change (both for the Cobb-Douglas case and the high value of ε). In contrast, for a low elasticity of labor (i.e. $\eta = 1$) the values of ω^a are much closer across the three tax experiments. The reason is simply that in this case mobility is mainly driven by factor price changes as the low value of η implies that labor supply responses are small.

7. Conclusions

In this paper we have studied wealth and income mobility in a Ramsey model with heterogeneous endowments of wealth and ability. In contrast to existing work with only one source of heterogeneity, our setup generates rich distributional dynamics that are highly responsive to structural and policy changes. For example, in our previous work with differences in only initial wealth, while such changes could expand or contract the distribution of income, agents’ relative positions remained unchanged over time. In contrast, for heterogeneity in discount rates, an agent’s relative position can change, yet the extent of mobility and the degree of wealth inequality are unaffected by changes in technology or taxes since the distribution of wealth ultimately degenerates to one in which the most patient individual holds all the capital. In our current framework, both inequality and mobility respond sharply to the macroeconomic environment, implying that changes in fundamentals or policy affect aggregate magnitudes, distribution, and the extent to which agents’ position in the income distribution depend on their ability endowment.

Our numerical examples highlight the key role played by the elasticity of the labor supply. We found that although the percentage changes in inequality were roughly the same in the case of a high and a low elasticity, mobility differed substantially in the two cases, with a greater elasticity of
labor being associated with a higher value of our mobility index. The reason for this difference lies in the role played by the endogenous labor supply. Wealthier people supply less labor while more able people supply more, and these two effects drive, together with changes in factor prices, the possibility of income mobility. With a high elasticity of the labor supply, these responses are large, allowing the ability-rich to catch up more easily with the capital-rich and these results in greater mobility than for low values of this elasticity.

When we consider the effect of a reduction in government expenditure (and the required income tax rate), our analysis highlights the different behavior of inequality and mobility. The policy change results in much smaller changes in inequality than in the case of a productivity change, yet the degree of income mobility is about the same. The reason for these responses is that there is now a direct impact of tax changes on income and labor supply, which is absent in the case of a productivity change. The policy thus barely affects the overall degree of inequality yet there is substantial movement of individuals along the income distribution, so that, in the long-run, there is a stronger correlation between ability and income than before the policy change.

The joint analysis of inequality and mobility is important because not all forms of inequality are perceived in the same way. In particular, rewarding ability is often seen as a ‘fairer’ source of inequality than are differences in income due to initial wealth endowments; see Roemer (1998). As a result, one’s perception of the fairness of an economy with a certain level of inequality will also depend on the degree of income mobility that is associated with that level of inequality. Our results emphasize that although substantial progress has been made in understanding the behavior of income distribution in macroeconomic models, focusing only on changes in an inequality index is insufficient to understand the implications of policy changes, since behind a given degree of inequality there may lay very different patterns of individual income mobility.
Table 1: Increase in productivity

Baseline: Cobb-Douglas ($\rho = 0, \varepsilon = 1$) and labor supply elasticity of $\eta = 1.75$

<table>
<thead>
<tr>
<th>Base: $A = 1.5$</th>
<th>Labor</th>
<th>\tilde{K}</th>
<th>\tilde{Y}</th>
<th>σ^2_k</th>
<th>σ^2_v</th>
<th>σ^2_y</th>
<th>ω_k</th>
<th>ω_y^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = 2$</td>
<td>$L(0)$, L</td>
<td>0.277</td>
<td>1.804</td>
<td>0.771</td>
<td>14</td>
<td>1.422</td>
<td>0.676</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>$L = 0.277$ (0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\tilde{L}</td>
<td>2.771 (+53.6%)</td>
<td>1.784 (+53.6%)</td>
<td>13.575 (-3.03%)</td>
<td>1.386 (-2.57%)</td>
<td>0.669 (-1.10%)</td>
<td>0.016</td>
<td>7.471</td>
</tr>
</tbody>
</table>

Low elasticity of the labor supply: $\eta = 1.0$ (and Cobb-Douglas production)

<table>
<thead>
<tr>
<th>Base: $A = 1.5$</th>
<th>Labor</th>
<th>\tilde{K}</th>
<th>\tilde{Y}</th>
<th>σ^2_k</th>
<th>σ^2_v</th>
<th>σ^2_y</th>
<th>ω_k</th>
<th>ω_y^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = 2$</td>
<td>$L(0)$, L</td>
<td>0.401</td>
<td>2.614</td>
<td>1.117</td>
<td>14</td>
<td>0.990</td>
<td>0.875</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>$L = 0.405$ (0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\tilde{L}</td>
<td>4.015 (+53.6%)</td>
<td>1.716 (+53.6%)</td>
<td>13.590 (-2.93%)</td>
<td>0.970 (-2.05%)</td>
<td>0.862 (-1.44%)</td>
<td>0.016</td>
<td>5.157</td>
</tr>
</tbody>
</table>

High elasticity of substitution in production: $\rho = -0.13, \varepsilon = 1.15$ (and labor supply elasticity of $\eta = 1.75$)

<table>
<thead>
<tr>
<th>Base: $A = 1.5$</th>
<th>Labor</th>
<th>\tilde{K}</th>
<th>\tilde{Y}</th>
<th>σ^2_k</th>
<th>σ^2_v</th>
<th>σ^2_y</th>
<th>ω_k</th>
<th>ω_y^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = 2$</td>
<td>$L(0)$, L</td>
<td>0.256</td>
<td>2.472</td>
<td>0.876</td>
<td>14</td>
<td>2.354</td>
<td>0.779</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>$L = 0.252$ (-2.18%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\tilde{L}</td>
<td>4.222 (+70.8%)</td>
<td>1.433 (+63.6%)</td>
<td>13.820 (-1.28%)</td>
<td>2.651 (+12.6%)</td>
<td>0.803 (+3.11%)</td>
<td>0.007</td>
<td>5.662</td>
</tr>
</tbody>
</table>
Table 2: Fiscal changes

Baseline: Cobb-Douglas \((\rho = 0, \varepsilon = 1)\) and labor supply elasticity of \(\eta = 1.75\)

<table>
<thead>
<tr>
<th></th>
<th>Labor</th>
<th>(\tilde{K})</th>
<th>(\tilde{Y})</th>
<th>(\tilde{\sigma}_k^2)</th>
<th>(\tilde{\sigma}_\xi^2)</th>
<th>(\tilde{\sigma}_\eta^2)</th>
<th>(\omega_k)</th>
<th>(\omega_y^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base: (\tau_w = \tau_k = g = 0.22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.277</td>
<td>1.804</td>
<td>0.771</td>
<td>14</td>
<td>1.422</td>
<td>0.676</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Expenditure/tax reduction (\tau_w = \tau_k = g = 0.17)</td>
<td>(L(0)) 0.278</td>
<td>1.979</td>
<td>0.795</td>
<td>13.890</td>
<td>1.413</td>
<td>0.674</td>
<td>0.004</td>
<td>7.368</td>
</tr>
<tr>
<td></td>
<td>(\bar{L}) 0.277</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift in the tax burden: Reduction in capital income tax (\tau_k = 0.17, \tau_w = 0.245, g = 0.22)</td>
<td>(L(0)) 0.271</td>
<td>1.933</td>
<td>0.776</td>
<td>13.920</td>
<td>1.650</td>
<td>0.601</td>
<td>0.003</td>
<td>9.106</td>
</tr>
<tr>
<td></td>
<td>(\bar{L}) 0.270</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift in the tax burden: Reduction in labor income tax (\tau_k = 0.322, \tau_w = 0.17, g = 0.22)</td>
<td>(L(0)) 0.288</td>
<td>1.536</td>
<td>0.753</td>
<td>14.240</td>
<td>1.066</td>
<td>0.847</td>
<td>-0.009</td>
<td>5.281</td>
</tr>
<tr>
<td></td>
<td>(\bar{L}) 0.289</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low elasticity of the labor supply: \(\eta = 1.0\) (and Cobb-Douglas production)

<table>
<thead>
<tr>
<th></th>
<th>Labor</th>
<th>(\tilde{K})</th>
<th>(\tilde{Y})</th>
<th>(\tilde{\sigma}_k^2)</th>
<th>(\tilde{\sigma}_\xi^2)</th>
<th>(\tilde{\sigma}_\eta^2)</th>
<th>(\omega_k)</th>
<th>(\omega_y^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base: (\tau_w = \tau_k = g = 0.22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.401</td>
<td>2.614</td>
<td>1.117</td>
<td>14</td>
<td>0.991</td>
<td>0.875</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Expenditure/tax reduction (\tau_w = \tau_k = g = 0.17)</td>
<td>(L(0)) 0.402</td>
<td>2.868</td>
<td>1.152</td>
<td>13.894</td>
<td>0.985</td>
<td>0.872</td>
<td>0.004</td>
<td>5.085</td>
</tr>
<tr>
<td></td>
<td>(\bar{L}) 0.401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift in the tax burden: Reduction in capital income tax (\tau_k = 0.17, \tau_w = 0.245, g = 0.22)</td>
<td>(L(0)) 0.394</td>
<td>2.813</td>
<td>1.130</td>
<td>13.919</td>
<td>1.129</td>
<td>0.795</td>
<td>0.003</td>
<td>5.746</td>
</tr>
<tr>
<td></td>
<td>(\bar{L}) 0.394</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift in the tax burden: Reduction in labor income tax (\tau_k = 0.321, \tau_w = 0.17, g = 0.22)</td>
<td>(L(0)) 0.414</td>
<td>2.202</td>
<td>1.082</td>
<td>14.250</td>
<td>0.775</td>
<td>1.048</td>
<td>-0.009</td>
<td>4.077</td>
</tr>
<tr>
<td></td>
<td>(\bar{L}) 0.416</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 (continued): Fiscal changes

High elasticity of substitution in production: $\rho = -0.13, \varepsilon = 1.15$ (and labor supply elasticity of $\eta = 1.75$)

<table>
<thead>
<tr>
<th></th>
<th>Labor</th>
<th>\hat{K}</th>
<th>\hat{Y}</th>
<th>$\hat{\sigma}^2_k$</th>
<th>$\hat{\sigma}^2_c$</th>
<th>$\hat{\sigma}^2_y$</th>
<th>ω_k</th>
<th>ω^*_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base: $\tau_w = \tau_k = g = 0.22$</td>
<td></td>
<td>0.256</td>
<td>2.472</td>
<td>0.876</td>
<td>14</td>
<td>2.354</td>
<td>0.779</td>
<td>-</td>
</tr>
<tr>
<td>Expenditure/tax reduction</td>
<td></td>
<td>0.255</td>
<td>2.771</td>
<td>0.914</td>
<td>13.926</td>
<td>2.408</td>
<td>0.783</td>
<td>0.003</td>
</tr>
<tr>
<td>$\tau_w = \tau_k = g = 0.17$</td>
<td>$L(0)$</td>
<td>0.255</td>
<td>2.914</td>
<td>13.953</td>
<td>2.929</td>
<td>0.666</td>
<td>0.002</td>
<td>7.527</td>
</tr>
<tr>
<td>Shift in the tax burden:</td>
<td></td>
<td>0.256</td>
<td>2.771</td>
<td>0.914</td>
<td>13.926</td>
<td>2.408</td>
<td>0.779</td>
<td>-</td>
</tr>
<tr>
<td>Reduction in capital income tax</td>
<td></td>
<td>0.255</td>
<td>2.914</td>
<td>13.953</td>
<td>2.929</td>
<td>0.666</td>
<td>0.002</td>
<td>7.527</td>
</tr>
<tr>
<td>$\tau_k = 0.17, \tau_w = 0.254, g = 0.22$</td>
<td>\hat{L}</td>
<td>0.247</td>
<td>2.681</td>
<td>0.884</td>
<td>13.953</td>
<td>2.929</td>
<td>0.666</td>
<td>0.002</td>
</tr>
<tr>
<td>Shift in the tax burden:</td>
<td></td>
<td>0.269</td>
<td>2.136</td>
<td>0.854</td>
<td>14.170</td>
<td>1.701</td>
<td>0.964</td>
<td>-0.006</td>
</tr>
<tr>
<td>Reduction in labor income tax</td>
<td></td>
<td>0.257</td>
<td>2.771</td>
<td>0.914</td>
<td>13.926</td>
<td>2.408</td>
<td>0.779</td>
<td>-</td>
</tr>
</tbody>
</table>
Appendix

A.1 Derivation of the macroeconomic equilibrium and linearization of the aggregate system

Maximizing the utility function, (1), subject to the budget constraint, (2) yields the following standard first-order optimality conditions

\[C_i^{\gamma} l_i^{\eta} = \lambda_i \] \hspace{1cm} (A.1a)

\[\eta C_i^{\gamma} l_i^{\eta-1} = (1 - \tau) \alpha_i w \lambda_i \] \hspace{1cm} (A.1b)

\[(1 - \tau) r - \delta = \beta - \frac{\lambda_i}{\lambda_i} \] \hspace{1cm} (A.1c)

where \(\lambda_i \) is agent \(i \)'s shadow value of capital, together with the transversality condition \(\lim_{t \to \infty} \lambda_i K_i e^{-\beta t} = 0 \). From these optimality conditions we obtain

\[\eta \frac{C_i}{l_i} = \alpha_i w (1 - \tau) \] \hspace{1cm} (A.2)

Taking the time derivatives of (A.1a) and (A.2) (with \(\alpha_i \) constant over time), and combining the former with (A.1c), yields

\[(\gamma - 1) \frac{\dot{C}_i}{C_i} + \eta \gamma \frac{\dot{l}_i}{l_i} = \frac{\dot{\lambda}_i}{\lambda_i} = \beta - r (K_i l_i) (1 - \tau) \] \hspace{1cm} (A.3a)

\[\frac{\dot{C}_i}{C_i} \frac{\dot{l}_i}{l_i} = \frac{\ddot{w}}{w} \] \hspace{1cm} (A.3b)

With all agents facing the same tax rates and factor returns, (A.3a) and (A.3b) imply \(\dot{C}_i / C_i = \dot{C} / C \) and \(\dot{l}_i / l_i = \dot{l} / l \) for all \(i \). Substituting (A.2) into (2), we may write the individual’s accumulation equation in the form

\[\frac{\dot{K}_i}{K_i} = [(1 - \tau) r - \delta] + (1 - \tau) \frac{w}{K_i} a_i \left(1 - l_i \frac{1 + \eta}{\eta} \right) + \frac{T_i}{K_i} \] \hspace{1cm} (A.4)

To derive the macroeconomic equilibrium and its dynamics, we sum this equation over \(i \), together with other components of the individual agent’s optimality conditions. Aggregating (A.2) over all agents, the aggregate economy-wide consumption is
\[C(t) = (1- \tau_w) \frac{w(t)}{\eta} \sum_{i} a_{i} \rho_{i} = (1- \tau_w) \frac{w}{\eta} (1-L(t)) \] \hspace{1cm} (A.2')

Substituting \(\bar{C} / C \) and \(\bar{I} / I \) into (A.3a) and aggregating (A4) over all agents, we obtain the aggregate (average) Euler and capital accumulation equations, respectively

\[
(\gamma - 1) \frac{\bar{C}}{C} + \eta \gamma \frac{\bar{I}}{I} = \beta + \delta - (1- \tau_k) r(K,L)
\] \hspace{1cm} (A.5a)

\[
\frac{\dot{K}}{K} = (1- \tau_k) r - \delta + (1- \tau_w) \frac{w}{K} \left(1 - \Omega \left(\frac{1+\eta}{\eta} \right) \right) + \frac{T}{K}
\] \hspace{1cm} (A.5b)

These can be reduced to a pair of dynamic equations in \(K \) and \(L \) that are independent of the distributional aspects. The procedure we follow is analogous to that employed by Turnovsky and García-Peñalosa (2008), the only difference being that due to the presence of the term \(\Omega \).

Using (A.5a), the government budget constraint, (4), the equilibrium factor returns, and the labor market clearance condition, (5b), the aggregate dynamic system can be summarized by

\[
\bar{K} = (1-g)F(K,L) - (1- \tau_w)F_{L}(K,L) \frac{(1-L)}{\eta} - \delta K
\] \hspace{1cm} (A.6a)

\[
\bar{L} = \frac{1}{Z(L)} \left[(1- \gamma) - (1- \gamma)F_{KL} - (1- \gamma)F_{L} \left(\frac{(1-L)}{\eta} - \delta K \right) + \left[(\beta + \delta) - F_{k} (1- \tau_k) \right] \right]
\] \hspace{1cm} (A.6b)

where \(Z(L) \equiv \left(1 - \gamma (1+\eta) \right) / \left(1 - \bar{L} \right) - (1- \gamma)F_{L} / F_{L} \). These equations are just a representation of the standard (aggregate) Ramsey model with endogenous labor supply.

We can now examine the dynamics of the aggregate system. Linearizing eqs. (A.6a) and (A.6b) around the steady state (6a) and (6b) yields the local dynamics for \(K(t) \) and \(L(t) \):

\[
\begin{pmatrix}
\dot{K}(t) \\
\dot{L}(t)
\end{pmatrix} =
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\begin{pmatrix}
K(t) - \bar{K} \\
L(t) - \bar{L}
\end{pmatrix}
\] \hspace{1cm} (A.7)

where

\[
b_{11} = (1-g)F_{K} - (1- \tau_w)F_{KL} \frac{(1-L)}{\eta} - \delta; \quad b_{12} = F_{L} \left(1-g + \frac{1}{\eta} (1- \tau_w) \right) - (1- \tau_w)F_{L} \frac{(1-L)}{\eta} > 0; \]

\[
b_{21} = \frac{1}{Z(L)} \left[(1- \gamma)F_{KL} b_{11} - F_{KK} (1- \tau_k) \right]; \quad b_{22} = \frac{F_{KL}}{Z(L)} b_{12} - (1- \tau_k)
\]
By direct calculation and using (6b) we can show that \((b_1 b_{22} - b_{12} b_{21}) < 0\), which implies that the equilibrium is a saddle point.

The stable saddle path of labor is given by \(L(t) = \tilde{L} + (\mu - b_{11})/b_{12} (K(t) - \tilde{K})\). To determine its slope note, first, that \(b_{12} > 0\). Thus the slope will depend upon \(\text{sgn}(\mu - b_{11})\). Solving for \(\mu\) yields \(\mu - b_{11} = \left(b_{22} - b_{11}\right) - \sqrt{\left(b_{22} - b_{11}\right)^2 + 4 b_{12} b_{21}}/2\). Since \(b_{12} > 0\), a necessary and sufficient condition for \(\mu < b_{11}\) is that \(b_{21} > 0\). Defining the elasticity of substitution in production, \(\varepsilon = F_K F_L / FF_{KL}\), and using the steady-state equilibrium conditions, we may write

\[
\frac{b_{11}}{b_{21}} = \frac{(1 - g)(1 - 1) - (1 - 1) (1 - 1)}{1 - 1} ; \quad b_{21} = - \frac{F_{KK}}{ZF_K} \left[\beta + \delta + b_{11} \tilde{s}_K (1 - 1) \right] \]

The condition \(b_{21} > 0\) involves tradeoffs between \(\varepsilon\) and other parameters. For example, if \(\delta = 0\), it is equivalent to

\[
\varepsilon > \frac{\tilde{s}_K (1 - g)(1 - 1)}{\tilde{s}_K (1 - g)(1 - 1) + (1 - 1)(1 - 1)} \]

This imposes a lower bound on the elasticity of substitution and is certainly met by the Cobb-Douglas. Taking \(\gamma = 0\), \(\tau_1 = 0\), this reduces to \(\varepsilon > \tilde{s}_K\), which holds in all plausible circumstances.

A.2 Derivation of the dynamics of individual relative capital

The derivation of the dynamics of the relative individual capital stock follows Turnovsky and García-Peñalosa (2008). Linearizing (8) around the steady state yields

\[
\dot{k}_i(t) = \frac{w_i \tilde{K}_i \tilde{L}_i (1 - \tau_o)}{\tilde{K}} \left[(\Omega - 1+ \eta)(k_i(t) - \tilde{k}_i) + \frac{1+ \eta}{\eta} \Omega \tilde{k}_i - a_i \rho_i \right] (l(t) - \tilde{l}) \]

(A.9)

The stable (bounded) solution to this equation is

\[
k_i(t) = \tilde{k}_i + \frac{1}{\mu - \frac{F_i(\tilde{K}, \tilde{L})(1 - \tau_o)}{\tilde{K}} \left(\Omega - 1 + \frac{\eta}{\eta} \right) \frac{\tilde{K}}{\tilde{L}}} \left(\Omega - 1 + \frac{\eta}{\eta} \right) \frac{\tilde{L}}{\eta} \left(l(t) - \tilde{l} \right) \]

(A.10)

Using (5b) and (9), we may express (A.10) in the form
\[
k_i(t) = \tilde{k}_i + \frac{1}{F_i(\bar{K})(1-\tau_w)} \left[\frac{F_i(\bar{K})(1-\tau_w)}{\bar{K}} \right] \left[\frac{L(t) - \bar{L}}{1-\bar{L}} \right]
\]

which, using the fact that \(k_i(0) = k_{i_0} \), enables the solution for \(k_i(t) \) to be expressed as in equations (10) and (13) in the text. The solution for \(y_i'(t) \) is obtained by substituting (9') into \(y_i'(t) \equiv a_i w(t) L_i(t) / (w(t)L(t)) \), while the solution for \(y_i(t) \) is obtained by combining (14) with (10).

A.3 The dynamics of before-tax relative income

We characterize the dynamic adjustments of before-tax relative income. In contrast to wealth, which always evolves gradually, relative income undergoes a discrete change whenever a structural change occurs. To consider this we define \(\tilde{\phi}_0 \) and \(\tilde{\phi} \) as, the values of \(\phi(t) \) in the initial and in the new steady states, respectively, and recall the following

(i) Initial pre-shock steady state: \(\tilde{y}_{i0}(0) = \tilde{\phi}_0 k_{i,0} + (1-\tilde{\phi}_0) a_i \), where

\[
\tilde{\phi}_0 \equiv s_{K,0} + \frac{s_{\bar{K},0}}{\bar{L}_0} \left(\bar{L}_0 - \frac{1}{1+\eta} \right) = 1 - \frac{s_{\bar{K},0}}{\bar{L}_0} \frac{1}{1+\eta}
\]

(ii) Initial post-shock relative income: \(y_i(0) = \phi(0) k_{i,0} + (1-\phi(0)) a_i \), where

\[
\phi(0) \equiv s_k(0) + s_{\bar{L}}(0) \frac{L(0)}{L(0)} \left(\bar{L} - \frac{1}{1+\eta} \right) \left(\frac{1}{1+\theta(0)} \right)
\]

(iii) Post shock steady state: \(\tilde{\tilde{y}}_i = \left(\tilde{\phi} \tilde{k}_{i,0} + (1+\theta(0) - \tilde{\phi}) a_i \right) / (1+\theta(0)) \) where

\[
\tilde{\phi} \equiv 1 - \frac{s_{\bar{L}}}{\bar{L}} \frac{1}{1+\eta}
\]

Agent \(i \)'s relative income undergoes the following changes in response to a structural change:

(i) **Impact effect:** \(y_i(0) - \tilde{y}_{i,0} = (\phi(0) - \tilde{\phi}_0)(k_{i,0} - a_i) \),

(ii) **Transitional effect:** \(\tilde{y}_i - y_i(0) = (\tilde{\phi} / (1+\theta(0) - \phi(0))) (k_{i,0} - a_i) \),

(iii) **Overall effect:** \(\tilde{\tilde{y}}_i - \tilde{y}_{i,0} = (\tilde{\phi} / (1+\theta(0) - \tilde{\phi}_0)) (k_{i,0} - a_i) \),
The signs of these expressions depend upon both relative endowments of skills to initial capital and changes in factor shares and leisure, and no general patterns can be established.

To examine the dynamics of income inequality recall (23). Consider an economy that is initially in steady state and is subject to a structural change. The changes in income inequality immediately following the shock, and along the subsequent transitional path to the new steady state are:

\[
\sigma_y^2(0) - \tilde{\sigma}_y^2 = (\varphi(0) - \tilde{\varphi}_0) \left\{ (\varphi(0) + \tilde{\varphi}_0) \left[\sigma_{k,0}^2 + \sigma_a^2 - 2\sigma_{k,0}\sigma_a \chi \right] - 2 \left[\sigma_a^2 - \sigma_{k,0}\sigma_a \chi \right] \right\}
\]

\[
\tilde{\sigma}_y^2 - \sigma_y^2(0) = \left(\frac{\tilde{\varphi}}{1 + \varphi(0)} - \varphi(0) \right)
\]

\[
\cdot \left\{ \left(\frac{\tilde{\varphi}}{1 + \varphi(0)} + \varphi(0) \right) \left[\sigma_{k,0}^2 + \sigma_a^2 - 2\sigma_{k,0}\sigma_a \chi \right] - 2 \left[\sigma_a^2 - \sigma_{k,0}\sigma_a \chi \right] \right\}
\]

After the impact response, inequality will move towards its new steady state, with the difference between the two steady states being given by (24).

A.4 Proofs of Propositions 1, 2, and 3

Proof of Proposition 1: Catch-up will occur if and only if \(\hat{\tau} > 0 \), which since \(\mu < 0 \), will be so if and only if

\[
0 < \frac{(a_i - a_j) + (k_{i,0} - k_{j,0}) / \vartheta(0)}{(a_i - a_j) - (k_{i,0} - k_{j,0})} < 1
\]

In the case of a growing economy, i.e. when \(\vartheta(0) > 0 \), these inequalities imply that for \(k_{i,0} > k_{j,0} \) there will be catch up if and only if \(-\Delta a \cdot \vartheta(0) > \Delta k \).

Proof of Proposition 2: At any point of time following a shock

\[
y_i(t) - y_j(t) = \varphi(t) \left(\frac{1 + \vartheta(t)}{1 + \vartheta(0)} \right) (k_{i,0} - k_{j,0}) + \left[1 - \varphi(t) \right] \left(\frac{1 + \vartheta(t)}{1 + \vartheta(0)} \right) (a_i - a_j)
\]

implying that

\[
y_i(0) - y_j(0) = \varphi(0) (k_{i,0} - k_{j,0}) + (1 - \varphi(0)) (a_i - a_j)
\]

\[
\tilde{y}_i - \tilde{y}_j = \frac{\tilde{\varphi}}{1 + \vartheta(0)} (k_{i,0} - k_{j,0}) + \left[1 - \frac{\tilde{\varphi}}{1 + \vartheta(0)} \right] (a_i - a_j)
\]
Suppose first that i has a greater capital endowment than j but a lesser skill endowment, so that $\Delta k > 0$ and $\Delta a < 0$. From (A.10b,c), $y_i(0) - y_j(0) > 0$ and $\tilde{y}_i < \tilde{y}_j$ hold if and only if (18a) holds. A necessary condition for (19a) to hold is $\phi(0) > \tilde{\phi} / (1 + \theta(0))$. Consider now the case where agent i is initially richer due to a greater skill endowment but j has greater initial wealth: $\Delta a > 0$ and $\Delta k < 0$. From (A.10), income mobility is possible if and only if (18b) holds. Moreover, satisfying (18b) requires $\phi(0) < \tilde{\phi} / (1 + \theta(0))$.

Proof of Proposition 3: The time at which the income of two agents is the same, denoted \bar{t}, is defined by $\phi(\bar{t})(1 + \theta(\bar{t})) = [1 + \theta(0)]\Delta a / (\Delta a - \Delta k)$, implying that there is catch-up if and only if $\bar{t} > 0$. Combining this expression and (17) we see that $\phi(\bar{t})(1 + \theta(\bar{t})) = 1 + \theta(\hat{t})$. Since $\phi(\bar{t}) < 1$ in a growing economy, this equality implies that $\theta(\bar{t}) > \theta(\hat{t})$ which, given the definition of $\theta(t)$ in (13), in turn implies $\hat{t} > \bar{t}$.

A.5 Comparative statics for aggregate magnitudes

We next consider the effect of socks on the steady-state aggregate magnitudes, $\bar{K}, \bar{L}, \bar{Y}$.

(i) **Productivity shock:** Assuming a common tax rate for all income, $\tau_w = \tau_k = \tau_y = g$, the effect of increase in A on the aggregate magnitudes is:

$$
\frac{d\bar{K}}{dA} = \frac{\bar{K}}{A} \frac{1}{s_L} \left[s_k (1 - \bar{L}) + \varepsilon (1 + \eta) \bar{L} \right] > 0
$$

$$
\frac{d\bar{L}}{dA} = \frac{\bar{L}}{A} \frac{s_k}{s_L} (1 - \varepsilon)
$$

$$
\frac{d\bar{Y}}{dA} = \frac{F(\bar{K}, \bar{L})}{A} \frac{s_L}{s_L} \left[\varepsilon \bar{L} + (1 - \bar{L}) \right] > 0
$$

(ii) **Tax financed change in government expenditure:** Suppose that the initial tax rates and the tax changes are uniform, $(\tau_w = \tau_k = \tau_y; d\tau_w = d\tau_k = d\tau_y)$, so that from the government budget constraint, (5), we obtain $dg / d\tau_y = 1$. The aggregate effects of the change in taxes are then
\[\frac{d\tilde{K}}{d\tau_y} \bigg|_{dg=dt_y} = -\frac{\tilde{K}}{1-\tau_y} \frac{1}{s_L} \left[s_K (1-\tilde{L}) + \varepsilon (1+\eta)\tilde{L} \right] < 0 \]

\[\frac{d\tilde{L}}{d\tau_y} \bigg|_{dg=dt_y} = -\frac{\tilde{L}}{1-\tau_y} \frac{s_K}{s_L} (1-\tilde{L})(1-\varepsilon) \]

\[\frac{d\tilde{Y}}{d\tau_y} \bigg|_{dg=dt_y} = -\frac{F(\tilde{K},\tilde{L})}{s_L} \frac{1}{\varepsilon} + (1-\tilde{L}) \right] < 0 \]

(iii) **Shift in tax burden:** Suppose that capital and labor income are initially taxed at the uniform rate, and consider the effect of shifting the tax burden, while maintaining \(g \) constant. The required change in the tax rates is \(d\tau_k / d\tau_w = (1 - s_K) / s_K \), and the aggregate effects are given by

\[\frac{d\tilde{K}}{d\tau_w} = \frac{\varepsilon K(1-\tilde{L})}{1-\tau_w} \frac{1 + \eta}{s_K} > 0 \]

\[\frac{d\tilde{L}}{d\tau_w} = -\frac{\varepsilon L(1-\tilde{L})}{1-\tau_w} < 0 \]

\[\frac{d\tilde{Y}}{d\tau_w} = \frac{\varepsilon (1-\tilde{L})}{1-\tau_w} \frac{F_l}{\eta} > 0 \]
References

R3

