The optimal inflation rate revisited

Giovanni Di Bartolomeo Patrizio Tirelli
Università di Teramo Università di Milano Bicocca
gdibartolomeo@unite.it patrizio.tirelli@unimib.it

Nicola Acocella
Università La Sapienza di Roma
nicola.acocella@uniroma1.it

March, 2011

Abstract

We challenge the widely held belief that New Keynesian models cannot predict an optimal positive inflation rate. In fact we find that even for the US economy, characterized by relatively small government size, optimal trend inflation is justified by the Phelps argument that the inflation tax should be part of an optimal (distortionary) taxation scheme. This mainly happens because, unlike standard calibrations of public expenditures that focus on public consumption-to-GDP ratios, we also consider the diverse, highly distortionary effect of public transfers to households. Our prediction of the optimal inflation rate is broadly consistent with recent estimates of the Fed inflation target. We also contradict the view that the Ramsey-optimal policy should minimize inflation volatility over the business cycle and induce near-random walk dynamics of public debt in the long run. In fact optimal fiscal and monetary policies should stabilize long-run debt-to-GDP ratios in order to limit tax (and inflation) distortions in steady state. This latter result is strikingly similar to policy analyses in the aftermath of the 2008 financial crisis

Jel codes: E52, E58, J51, E24.
Keywords: trend inflation, monetary and fiscal policy, Ramsey plan.

1 Introduction.

Optimal monetary policy analyses (Khan et al., 2003; Schmitt-Grohé and Uribe, SGU henceforth, 2004a) identify two key frictions driving the optimal level of long-run (or trend) inflation. The first one is the adjustment cost of goods prices, which invariably drives the optimal inflation rate to zero. The second one are monetary transaction costs that arise unless the central bank implements the Friedman rule, i.e. a negative steady-state inflation rate as long as the steady-state real interest rate is positive. Phelps (1973) conjectured that

*The authors acknowledge financial support by MIUR (PRIN).
to alleviate the burden of distortionary taxation it might be optimal for governments to resort to monetary financing, driving a wedge between the private and the social cost of money. SGU (2004a), who allow for an exogenous amount of public consumption, show that the optimal inflation rate lies between zero and the Friedman rule even accounting for the Phelps’ effect. This conclusion is marginally revised, i.e. the optimal inflation rate is 0.2%, if the government budget accounts for public transfers (SGU, 2006). A consensus therefore seems to exist that monetary transactions costs are relatively low at zero inflation, and that stable prices are the proper policy target. In their survey of the literature, SGU (2010) argue that the optimality of zero inflation is robust to other frictions, such as nominal wage adjustment costs, downward wage rigidity, hedonic prices, incompleteness of the tax system, the zero bound on the nominal interest rate.

This theoretical result is in sharp contrast with empirical evidence. For instance, both in the US and in the Euro area, average inflation rates over the 1970-1999 period have been close to 5%. Further, even the widespread central bank practice of adopting inflation targets between 2% and 4% is apparently at odds with theories of the optimal inflation rate (SGU, 2010).

In the paper we reconsider the issue, showing that dismissal of the Phelps’ effect is due to an unrealistic parameterization for public expenditures and overall taxation. In the literature, standard calibrations of public expenditures focus on public consumption-to-GDP ratios, typically set at 20% (SGU, 2004a; Aruoba and Schorfheide, 2009). This follows a long-standing tradition in business cycle models, where only public consumption decisions have real effects. In our framework this choice is not correct, because the focus here is on distortionary financing of public expenditures in steady state, where also other components of public expenditure matter. As a matter of fact, public consumption accounts for a limited component of the overall public expenditures in OECD countries (Table 1).

<table>
<thead>
<tr>
<th>Table 1 – Government expenditures and revenues (1998-2008)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
</tr>
<tr>
<td>Australia</td>
</tr>
<tr>
<td>Austria</td>
</tr>
<tr>
<td>Belgium</td>
</tr>
<tr>
<td>Canada</td>
</tr>
<tr>
<td>Czech Republic</td>
</tr>
<tr>
<td>Denmark</td>
</tr>
<tr>
<td>Finland</td>
</tr>
<tr>
<td>France</td>
</tr>
<tr>
<td>Germany</td>
</tr>
<tr>
<td>Greece</td>
</tr>
<tr>
<td>Hungary</td>
</tr>
<tr>
<td>Ireland</td>
</tr>
<tr>
<td>Italy</td>
</tr>
</tbody>
</table>

(1) public consumption; (2) other public expenditures; (3) total revenues
* ratios to GDP – Source OECD

Even if a proportion of total expenditures goes into production subsidies, it is apparent that distortionary taxation substantially exceeds public consumption,
in order to finance redistributive policies. For instance in the US, according to the National Accounts (NIPA) data, in the 1998-2008 period government transfer payments and government purchases respectively were close to 12% and 20% of GDP. Hyunseung and Reis (2011) document that between 2008 and 2009 three quarters of the US huge fiscal stimulus in response to the financial crisis were due to increases in transfers.

We show that just allowing for a plausible parameterization of public transfers to households in the SGU (2004a) model reverses their conclusion about the optimal inflation rate, which now monotonically increases from 2% to 12% as the transfers-to-GDP ratio goes from 10% to 20%. We also find that an identical increase in the public-consumption-to-GDP ratio would have a negligible impact on the optimal inflation rate. So, what is special about public transfers? To grasp the intuition behind our result, assume that lump-sum taxes can be used to finance expenditures. In the case of public transfers the overall effect on the household budget constraint is nil, and labor-consumption decisions are unchanged. By contrast, an increase in public consumption generates a negative wealth effect that raises the labor supply. If lump sum taxes are not available, the different wealth effect explains why financing transfers requires higher tax rates than financing an identical amount of public consumption. Since the incentive to monetary financing is increasing in the amount of tax distortions, this also explains why the optimal financing mix requires stronger reliance on inflation when we take transfers into account. Our result is robust to the inclusion of nominal wage rigidity, and is strengthened when we allow for a moderate degree of price and wage indexation (20%).

We then extend the model by introducing consumption scale effects in the monetary transactions technology, in line with existing theoretical models (Bau- mol, 1952; Khan et al., 2003) and with empirical evidence (Attanasio et al., 2002). We find that such consumption scale effects unambiguously contribute to raise the optimal inflation rate. The intuition behind this result is simple. An increase in inflation allows a reduction in distortionary taxation but raises the monetary transactions costs. This latter effect is weakened when the transaction cost is inversely related to the amount of consumption, which, in turn, increases if the tax rate falls.

In contrast with received wisdom on the optimality of zero-inflation targets, several empirical contributions suggest that the Federal Reserve has targeted a time-varying, positive inflation rate (see Cogley and Sbordone, 2008, and the references therein). As a preliminary attempt to assess the empirical relevance of our results, we calibrate the model to the US economy in order to benchmark our optimal inflation rate against Fernandez-Villaverde and Rubio-Ramirez (2008) estimates of the time-varying inflation target implicitly adopted by the Federal Reserve over the period 1957-2000. We consider different estimates of nominal rigidities found in the literature, and find that in all cases the increase in the public-transfers-to-GDP ratio observed during the high inflation sub-sample 1973-1991 causes an increase in the optimal inflation rate which accounts for a large part of the estimated increase in the Fed target in that period.

Finally, we investigate the optimal fiscal and monetary policy responses to shocks. The issue is admittedly not new, but we are able to provide new contributions to the literature. When prices are flexible and governments issue non-contingent nominal debt (Chari et al., 1991) it is optimal to use inflation as a lump-sum tax on nominal wealth, and the highly volatile inflation rate allows
to smooth taxes over the business cycle. This result is intuitive in so far as taxes are distortionary whereas inflation volatility is costless. SGU (2004a) show that when price adjustment is costly optimal inflation volatility is in fact minimal and long-run debt adjustment allows to obtain tax-smoothing over the business cycle. In this paper the SGU result is reversed when the model is calibrated to account for a relatively small amount of public transfers (10%). In this case tax and inflation volatility are exploited to limit debt adjustment in the long run. The interpretation of our result is simple. As discussed above, public transfers increase the tax burden in steady state. In this case, the accumulation of debt in the face of an adverse shock – which would work as a tax smoothing device in SGU (2004a) – is less desirable, because it would further increase long-run distortions. To avoid such distortions, the policymaker is induced to front-load fiscal adjustment, and to inflate away part of the real value of outstanding nominal debt. Our results provide theoretical support to policy-oriented analyses which call for a reversal of debt accumulated in the aftermath of the 2008 financial crisis (Abbas et al., 2010, Blanchard et al. 2010).

The remainder of the paper is organized as follows. The next section introduces the model. Section 3 defines the competitive equilibrium. Section 4 illustrates our main results. Section 5 considers the consumption scale effects on the transaction costs. In section 6 we outline a calibration of our model to the US economy. Section 7 concludes.

2 The model.

We consider a simple infinite-horizon production economy populated by a continuum of households and firms whose total measures are normalized to one. Monopolistic competition and nominal rigidities characterize both product and labor markets. A demand for money is motivated by assuming that money facilitates transactions. The government finances an exogenous stream of expenditures by levying distortionary taxes and printing money. Optimal policy is set according to a Ramsey plan. Right from the outset, it should be noted that the focus here is on the identification of the optimal financing mix for exogenous levels of public expenditures, including consumption and transfers. In this regard, we closely follow SGU (2004a, 2006, 2010).1

2.1 Households

The representative household \((i)\) maximizes the following utility function

\[
U = \sum_{t=0}^{\infty} \beta^t u(C_{t,i}, l_{t,i}) ; \quad u(C_{t,i}, l_{t,i}) = \ln C_{t,i} + \eta \ln (1 - l_{t,i})
\]

where \(\beta \in (0, 1)\) is the intertemporal discount rate, \(C_{t,i} = \left(\int_0^1 c_{t,i}(j) \rho_i \, dj \right)^{\frac{1}{\rho_i}}\) is a consumption bundle, \(l_{t,i}\) is a differentiated labor type that is supplied to all firms. The consumption price index is \(P_t = \left(\int_0^1 p_t(i) \frac{\rho_i}{\rho_t} \, di \right)^{\frac{1}{\rho_t}}\).

1 For a discussion of the role played by fiscal transfers in business cycle models see Hyunsung and Reis (2011) and the references cited therein.
The flow budget constraint in period t is given by
\[
C_t,i (1 + S_{t,i}) + \frac{M_{t,i}}{P_t} + \frac{B_{t,i} P_t}{P_t} = (1 - \tau_t) \frac{w_{t,i} q_{t,i}}{P_t} + \frac{M_{t-1,i}}{P_t} + \frac{T_t}{P_t} + \frac{R_{t-1} B_{t-1,i}}{P_t}
\]

where $w_{t,i}$ is the nominal wage; τ_t is the labor income tax rate; T_t denotes fiscal transfers; θ_t are firms profits; R_t is the gross nominal interest rate, $B_{t,i}$ is a nominally riskless bond that pays one unit of currency in period $t + 1$. $M_{t,i}$ defines nominal money holdings to be used in period $t + 1$ in order to facilitate consumption purchases.

Consumption purchases are subject to a transaction cost
\[
S_{t,i} = s(v_{t,i}), \quad s'(v_{t,i}) > 0
\]
where $v_{t,i} = \frac{P_t C_t}{M_{t,i}}$ is the household’s consumption-based money velocity. The features of $s(v_{t,i})$ are such that a satiation level of money velocity ($v^* > 0$) exists where the transaction cost vanishes and, simultaneously, a finite demand for money is associated to a zero nominal interest rate. Following SGU (2004a) the transaction cost is parameterized as
\[
s(v_{t,i}) = Av_{t,i} + B v_{t,i}^2
\]

The first-order conditions of the household’s maximization problem are:\footnote{When solving its optimization problem, the household takes as given goods and bond prices. As usual, we also assume that the household is subject to a solvency constraint that prevents him from engaging in Ponzi schemes.}
\[
c_t(j) = C_t \left(\frac{P_t(j)}{P_t} \right)^{1-\gamma}
\]
\[
\lambda_t = \frac{u_c(C_t, l_t)}{1 + s(v_t) + v_t s'(v_t)}
\]
\[
\frac{\lambda_t}{\lambda_{t+1}} = \beta R_t \frac{P_t}{P_{t+1}}
\]
\[
\frac{R_t - 1}{R_t} = s'(v_t) v_t^2
\]

Equation (5) is the demand for the good j. As in SGU (2004a) condition (6) states that the transaction cost introduces a wedge between the marginal utility of consumption and the marginal utility of wealth that vanishes only if $v = v^*$. Equation (7) is a standard Euler condition. Equation (8) implicitly defines the household’s money demand function.

\section*{2.2 Firms’ pricing decisions}

Each firm (j) produces a differentiated good using the production function:\footnote{We abstract from capital accumulation and assume constant returns to scale of employed labor. The consequences of these two assumptions are discussed in SGU (2006) and SGU (2010) respectively. Our results are not affected by the introduction of diminishing returns to scale for labor (simulation results available upon request.).}
\[
y_t(j) = z_t l_{t,j},
\]
where z_t denotes a productivity shock\(^4\) and $l_{t,j}$ is a standard labor bundle:

$$l_{t,j} = \left[\int_0^1 l_{t,j}(i) \frac{e^{-\gamma}}{\gamma} di \right]^{1/\gamma} \tag{10}$$

Firm (j) demand for labor type (i) is

$$l_{t,j}(i) = \left(\frac{w_{t,i}}{W_t} \right)^{-\sigma} l_{t,j} \tag{11}$$

where $W_t = \left[\int_0^1 w_{t,i}^{1-\sigma} di \right]^{1/\sigma}$ is the wage index.

We assume a sticky price specification based on Rotemberg (1982) quadratic cost of nominal price adjustment:

$$\frac{\xi_p}{2} \left(\frac{P_t(j)/P_{t-1}(j)}{\pi_p^{\delta}} - 1 \right)^2 \tag{12}$$

where $\xi_p > 0$ is a measure of price stickiness and $\pi_t = P_t/P_{t-1}$ denotes the gross inflation rate and $\delta \in [0, 1]$ is the degree of price indexation to past inflation.

In a symmetrical equilibrium the price adjustment rule satisfies:

$$\frac{z_t l_t (\rho - mc_t)}{1 - \rho} + \xi_p \frac{\pi_t^{\delta}}{\pi_{t-1}^{\delta}} \left(\frac{\pi_t}{\pi_{t-1}} - 1 \right) = E_t \beta \lambda_{t+1} \xi_t \left[\frac{\pi_{t+1}^{\delta}}{\pi_t^{\delta}} \left(\frac{\pi_{t+1}}{\pi_t} - 1 \right) \right] \tag{13}$$

where

$$mc_t = \frac{1}{\pi_t} \frac{W_t}{P_t} \omega$$

From (5) it would be straightforward to show that $\frac{1}{\rho} = \mu^p$ defines the price markup that obtains under flexible prices.

2.3 Wage-setting decisions

The labour market is also characterized by monopolistic competition and rigid nominal wages. Under flexible wages

$$\frac{W_t}{P_t} = \mu^w \Omega_t \frac{u_t(C_t, l_t)}{u(C_t, l_t)} \tag{14}$$

where $\mu^w = \sigma (\sigma - 1)^{-1}$ denotes the gross wage markup and $\Omega_t = \frac{1 + s(u_t) + \nu s'(u_t)}{1 - \sigma_t}$ denotes the policy wedge, which depends on both tax and inflation decisions.

We model nominal wage stickiness as in Rotemberg (1982). Each household maximizes the expected value of equation (1) subject to (2), (11) and to

$$\frac{\xi_w}{2} \left(\frac{W_t(j)/W_{t-1}(j)}{\pi_{t-1}^{\delta}} - 1 \right)^2 \tag{15}$$

where $\xi_w > 0$ is a measure of wage stickiness and $\delta_w \in [0, 1]$ is the degree of wage indexation to past inflation.

\(^4\)We assume that $\ln z_t$ follows an AR(1) process.
As a result, in a symmetrical equilibrium, the wage adjustment rule satisfies:

\[
\left[(1 - \tau_t) \frac{W_t}{\bar{P}_t} + \frac{\mu^w u_t(C_t, l_t)}{u_e(C, l_t)} \left(1 + s(v_t) + v_t s'(v_t) \right) \right] \frac{l_t}{\mu^w - 1} + \\
+ \xi_w \left[\frac{\omega_t}{\pi_{t-1}} \left(\frac{\omega_t}{\pi_{t-1}} - 1 \right) \right] = E_t \beta \frac{\omega_{t+1}}{\lambda_t} \xi_w \left[\frac{\omega_{t+1}}{\pi_t} \left(\frac{\omega_{t+1}}{\pi_t} - 1 \right) \right]
\]

(16)

where \(\omega_1 = \frac{W_t}{\bar{W}_{t-1}} \).

2.4 The government

As in SGU (2006), the government supplies an exogenous, stochastic and unproductive amount of public good \(G_t \) and implements exogenous transfers \(T_t \).

Government financing is obtained through a labor-income tax, money creation and issuance of one-period, nominally risk free bonds. The government’s flow budget constraint is then given by

\[
R_{t-1} \frac{B_{t-1}}{\bar{P}_t} + G_t + T_t = \tau_t \frac{W_t}{\bar{P}_t} + \frac{M_t - M_{t-1}}{\bar{P}_t} + \frac{B_t}{\bar{P}_t}
\]

(17)

3 The competitive equilibrium.

The competitive equilibrium is a set of plans \(\{C_t, l_t, \lambda_t, m_c, \pi_t, v_t\}_{t=0}^{+\infty} \) that, given the policies \(\{R_t, \tau_t\}_{t=0}^{+\infty} \), the exogenous processes \(\{z_t, q_t\}_{t=0}^{+\infty} \), and the initial conditions, satisfies (6), (7), (8), (13), (16), (17) and the aggregate resource constraint

\[
Y_t = C_t (1 + S_t) + G_t + \frac{\xi_w}{2} \left(\frac{\pi_t}{\pi_{t-1}} - 1 \right)^2 + \frac{\xi_w}{2} \left(\frac{w_t}{w_{t-1} \pi_{t-1}} - 1 \right)^2
\]

(18)

4 Ramsey policy.

The Ramsey policy is a set of plans \(\{R_t, \tau_t\}_{t=0}^{+\infty} \) that maximizes the expected value of (1) subject to the competitive equilibrium conditions (6), (7), (8), (13), (16), (17), (18) and the exogenous stochastic process driving the fiscal and technology shocks. Solution requires numerical simulations.

4.1 The role of public expenditure variables

The first step in our analysis is to replicate the simulation exercise in SGU (2004a) with the addition that \(0 < T/Y < 20\% \). Therefore, in this calibration

\footnote{Note that the focus of the paper is the identification of the optimal financing mix, where optimality is driven by efficiency considerations. Justifying the existence of government transfers as an optimal outcome would require some form of heterogeneity across households. This is beyond the scope of the paper.}

\footnote{As in SGU (2004a), \(\ln q_t - q_t = G_t/P_t \), is assumed to evolve exogenously following an independent AR(1) process. We assume instead that the level of the real transfer is non stochastic.}

\footnote{These are obtained implementing SGU (2004b) second order approximation routines.}
the labour market is perfectly competitive, $\mu^w = 1$, the nominal wage is flexible, $\xi_w = 0$, and there is no indexation $\delta = \delta_w = 0$. The time unit is meant to be a year; we set the subjective discount rate β to 0.96 to be consistent with a steady-state real rate of return of 4 percent per year; transaction cost parameters A and B are set at 0.011 and 0.075; we assume the debt-to-GDP ratio is 0.44 percent; in the goods market monopolistic competition implies a gross markup of 1.2; and the annualized Rotemberg price adjustment cost is 4.375. The preference parameter η is set so that in the flexible-price steady-state households allocate 20 percent of their time to work.

Table 2 – Baseline calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.96</td>
</tr>
<tr>
<td>μ^p</td>
<td>1.20</td>
</tr>
<tr>
<td>μ^w</td>
<td>1.00</td>
</tr>
<tr>
<td>A</td>
<td>0.011</td>
</tr>
<tr>
<td>ξ_p</td>
<td>4.37</td>
</tr>
<tr>
<td>ξ_w</td>
<td>0.00</td>
</tr>
<tr>
<td>B</td>
<td>0.075</td>
</tr>
<tr>
<td>δ_p</td>
<td>0.00</td>
</tr>
<tr>
<td>δ_w</td>
<td>0.00</td>
</tr>
</tbody>
</table>

In Figure 1 we describe the optimal inflation response to the transfer increase and to a corresponding variation in public consumption. Simulations show that inflation rapidly increases when T/Y grows beyond the 8% threshold. For instance, the optimal inflation rate is close to 3% when T/Y is 10%, and exceeds 13% when the transfer ratio is 20%. Simulations also show that in the case where public expenditure is confined to public consumption, optimal inflation would exceed 0.5% only for ratio G/Y larger than 35%.

8In all the paper the $AR(1)$ processes driving the government spending and the technology shock are calibrated as in SGU (2004a). The serial correlation of $\ln g_t$ is set at 0.9 and the standard deviation of innovation to $\ln g_t$ is 0.0302; the serial correlation of $\ln z_t$ is 0.82 and the standard deviation of innovation is 0.0229.
One key mechanism driving the choice of the optimal policy mix is related to the distortionary taxation necessary to finance the additional transfers, which adversely affects the labour supply and reduces the tax base. By contrast, the increase in public consumption generates a negative wealth effect that triggers a positive labour supply response and expands the tax base. In this case the incentive to increase inflation is much reduced.

Formally, the optimal policy mix is determined by the different effects of π_t, τ_t on the policy wedge $\Omega_t = \frac{1 + s(C_t, l_t)}{1 - \pi_t}$ in

$$\frac{W_t}{P_t} = \mu w \Omega_t \frac{u_l(C_t, l_t)}{u_c(C_t, l_t)}$$

$\Omega_t(\pi_t)$, $\Omega_t(\tau_t) > 0$, but $\Omega''_t(\tau_t) > 0$, $\Omega''_t(\pi_t) = 0$. This explains why the Ramsey planner increasingly relies on the inflation tax as public expenditures grow. In Figure 2 we compare the optimal steady state value of Ω with the value that would obtain if inflation were constrained at zero.

![Figure 2 – Public transfers and the policy wedge](image)

It is interesting to compare our interpretation of the inflationary outcome generated by the need to finance transfers with the one offered by SGU (2006: 385). In fact, they claimed that when the private sector must receive an exogenous amount of (after-tax) transfers, it is optimal to exploit the inflation tax on money balances in order to impose an indirect levy on the (transfers-determined) source of household income. In our view this claim is not correct. In fact, fiscal considerations would not matter for the optimal inflation rate if lump-sum taxes were available. The incentive to choose a positive inflation rate arises because taxes are distortionary and, as shown above, financing transfers is profoundly different from financing an equivalent amount of public consumption. Thus the Ramsey planner chooses a positive inflation rate in order to limit
output distortions and to increase output and consumption. In Figure 3 below we show the consumption responses to different transfer ratios when inflation is zero and when it is chosen optimally. Our interpretation of the reason why a sufficiently large amount of transfers calls for a positive inflation differs from the one presented in SGU (2006: 397), and is a novel contribution of the paper.

Recent studies suggest that firms adjust prices more frequently than previously thought. For instance Eichenbaum and Fischer (2007) infer that firms re-optimize prices once every 2.3–3 quarters, but cannot reject the hypothesis that firms reoptimize prices once every two quarters. In the figure below we consider the effects of different degrees of stickiness (measure as average duration of price-setting decisions) assuming that \(T/Y = 10\% \). The optimal inflation rate depends on the firms’ average adjustment to rest price, and substantially increase when average duration is between 2 and 3 quarters.
Finally, the optimal policy mix depends on monopolistic distortions. For instance, when $\mu^p = 1.1$ optimal inflation remains very close to zero for T/Y.

Figure 5 – Price adjustment and trend inflation
≤ 15\% (Figure 4).

4.2 Wage stickiness.

Introducing wage stickiness has two opposite effects on the optimal inflation rate. On the one hand, monopolistic distortions raise the incentive to substitute labor taxation with the inflation tax. On the other hand, nominal wage adjustment costs strengthen the case for price stability. After setting $\mu_w = 1.2^9$ we postulate that price and wage adjustment costs are identical ($\xi_w = \xi_p = 4.37$). Simulations show that for $T/Y < 10\%$ the two effects offset each other (Figure 5). Beyond that threshold the wage adjustment cost dominates and the optimal

9Our choice of the wage markup follows Erceg et al. (2006), and is close to the value reported in Gali et al. (2007), but is lower than the calibration in Erceg et al. (2000). It should be noted, however, that Christiano et al. (2005, 2010) choose values much closer to one. We will consider a different calibration later.
inflation rate falls relative to the perfect competition case.

4.3 Indexation

Inflation costs associated with nominal rigidities depend crucially on assumptions about the prices set by firms that cannot reoptimize. A commonly studied indexation scheme is one whereby non-reoptimized prices increase mechanically at a rate proportional to the economy-wide lagged rate of inflation (Christiano et al., 2005). In many estimated DSGE models it is assumed that the price and wage are indexed to a weighted average of past and trend inflation, in order to obtain a vertical long-run Phillips curve (see for instance Smets and Wouters, 2005, 2007). Recent contributions provide conflicting evidence on the extent of price indexation.\(^\text{10}\) In Figure 6 we assume an identical degree of wage and price indexation ($\delta_p = \delta_w$) ranging between 0 and 40%.\(^\text{11}\) When $T/Y > 10\%$ even a moderate degree of indexation (20%) has a non negligible impact on optimal

\(^{10}\) Cogley and Shorlone (2008) estimate a New Keynesian Phillips Curve, finding that price indexation in the U.S. is zero once a time-varying inflation trend is accounted for. By contrast, Barnes et al. (2009) show that this result is not robust to the introduction of more flexible indexation schemes. Aruoba and Schorfheide (2009) find that 15% of firms optimize in each period, 60% of firms fully index their price to past inflation, the remaining firms hold their price constant. Microdata analyses suggest that indexation parameters are lower for consumption prices than for nominal wages (Du Caju et al. 2008; Mackowiak and Smets, 2008). In line with this result, Fernandez-Villaverde and Rubio-Ramirez (2008) find that $\delta = 0.15, \delta_w = 0.85$.

\(^{11}\) Introducing asymmetries in the degrees of price and wage indexation would not affect our conclusions (simulations results available upon request).
inflation.

5 Extensions: Consumption scale effects in the monetary transactions technology.

The transaction cost specification adopted in (3) constrains the consumption elasticity of money demand to be one, in contrast with a large body of empirical literature. Theoretical models accounting for consumption scale effects include Baumol (1952) and Khan et al. (2003). Attanasio et al. (2002) find substantial economies of scale in cash management using microdata. In a different model, Guidotti and Vegh (1993) show that the constant elasticity of scale is an unduly restrictive assumption and that it is optimal to resort to the inflation tax if the transaction costs technology does not exhibit constant returns to scale. We therefore propose a definition of $S_{t,i}$ which accounts for such scale effects.

$$S_{t,i} = s(v_{t,i})g(C_{t,i}) ; \quad g(C_{t,i}) > 0, \quad g'(C_{t,i}) < 0$$ (19)

where $S_{t,i}$ still vanishes at v^* and $g'(C_{t,i}) < 0$ allows to obtain that unit transaction costs are decreasing in consumption. We assume the following specification for the monetary transaction cost

$$g(C_{t,i}) = C_{t,i}^{-\theta}, \quad \theta \geq 0$$ (20)

13 We also assume that $g(C)$ is twice continuously differentiable.
14 When $\theta = 0$ scale effects in consumption expenditure vanish and (19) converges to the transaction technology specified in SGU (2004a).
Note that for $\theta = 0$ scale effects in consumption expenditure vanish and (19) converges to (4).

The resulting money demand function

$$\frac{M_t}{P_t} = C_t \sqrt{\frac{B}{A} + (R_t - 1) \frac{C_t^\theta}{A}}$$

(21)
is characterized by a consumption elasticity (η_m):

$$\eta_m = \frac{\partial (M_t/P_t)}{\partial C_t} \frac{C_t}{M_t/P_t} = \left[1 - \frac{1}{2} \frac{\theta (R - 1) C_t^\theta}{B + (R - 1) C_t^\theta} \right] \leq 1$$

(22)

This apparently innocuous modification can have substantial implications for our model. In fact condition (6) now becomes

$$\lambda_t = \frac{u_c(C_t, l_t)}{1 + S_t + C_t \frac{\partial \delta}{\partial C_t}} = \frac{u_c(C_t, l_t)}{1 + \frac{\psi(v_{\theta}) + (1-\theta) x(v_{\theta})}{\epsilon}}$$

(23)
The transactions-induced wedge between the marginal utility of consumption and the marginal utility of wealth unambiguously falls in θ for any level of money velocity. Our conjecture is that this should support an increase in the optimal inflation rate. To grasp intuition observe that in (14) the policy wedge Ω_t now falls in θ (as $S_{t, i}$ accounts for scale effects of transaction costs technology). This, in turn, implies that the adverse effect of inflation on the desired real wage is reduced.

We compare three different scenarios. In scenario 1 we represent an economy calibrated as in SGU (2004a), where parameters are calibrated as in Table 2 with $G/Y = 0.2$, $T/Y = 0$. In scenario 2 instead we assume sticky wages (with $\mu_p = 1.2$ and $\xi_w = 4.37$), 20% indexation on both prices and wages, public consumption set at 20% and a transfer equal to 11% of output. In scenario 3 we assume that prices are relatively flexible and the degree of price indexation to past inflation is modest, whereas wages are characterized by strong indexation, as found in Galí and Rabanal (2005), Rabanal and Rubio-Ramírez (2005), Fernandez-Villaverde and Rubio-Ramirez (2008) and Christiano et al. (2010). Relative to scenario 2, we set $\xi_p = 2.5$ (i.e., price are reset about every six months on average), $\delta_p = 0.15$ and $\delta_w = 0.85$.

| Table 3 – Consumption scale effects |
|------------------|------------------|------------------|
| scenario 1 | scenario 2 | scenario 3 |
| θ | π | η_m | π | η_m | π | η_m |
| 0.0 | -0.15 | 1.000 | 4.43 | 1.000 | 7.87 | 1.000 |
| 0.4 | 0.00 | 0.959 | 4.63 | 0.962 | 8.26 | 0.962 |
| 0.8 | 0.12 | 0.956 | 4.80 | 0.963 | 8.55 | 0.963 |
| 1.2 | 0.19 | 0.967 | 4.92 | 0.974 | 8.95 | 0.974 |
| 1.6 | 0.23 | 0.978 | 4.98 | 0.984 | 9.13 | 0.984 |
| 2.0 | 0.25 | 0.987 | 5.00 | 0.991 | 9.22 | 0.991 |

Our simulations (Table 3) confirm that optimal trend inflation is increasing in θ. The strongest impact on inflation is obtained in scenario 3, when price

and nominal wage adjustment costs are relatively milder. In steady state equilibrium consumption scale effects have a limited, reversed hump-shaped effect on consumption elasticity of money demand, which reaches a minimum value for about $\theta = 0.6$.

6 Calibration for the US economy.

In this section we calibrate the model to the US economy. Our purpose is to benchmark the optimal inflation rate against Fernandez-Villaverde and Rubio-Ramirez (2008) estimates of the time-varying inflation target implicitly adopted by the Federal Reserve over the period 1957-2000 and over the high inflation sub-sample 1973-1991. The ratios G/Y and T/Y are derived from the US NIPA data. During the period 1957-2000 the average government-consumption and transfers-to-GDP have been 20% and 9%, respectively. For the sub-sample 1973-1991 we find similar figures for G/Y and a slightly higher transfers ratio, about 10%. As before we assume that the subjective discount rate β is 0.96 and the transaction cost parameters A and B are 0.011 and 0.075. For the remaining parameters ($\theta, \xi_p, \xi_w, \delta_p, \delta_w, \mu^p, \mu^w$) we consider 6 alternatives (Table 4). The first calibration simply replicates the SGU (2004a) exercise augmented by public transfers. Thus, we have perfect competition in the labor market and no indexation. The second calibration differs from the first because we consider consumption scale effects in monetary transaction costs to the calibration. The third calibration extends the second one by introducing in the labor market monopolistic competition and nominal rigidities, which are identical to those assumed for the goods market. In addition, we allow for a moderate degree of price and wage indexation (25%). In calibration 4 the parameters describing nominal rigidities (ξ_p, ξ_w) imply that prices re-optimized on average every 10 months and wages every 9 months as in Smets and Wouters (2007). In calibration 5 we consider the highest frequency of price adjustment we found in the literature, 2 quarters, as reported in Smets and Wouters (2007) and Eichenbaum and Fisher (2007).

17 As shown above, beyond the 8% threshold even a modest increase in T/Y may have a strong impact the optimal inflation rate.

18 In calibrations 4 and 5 we maintain a 25% degree of price and wage indexation because both Smets and Wouters (2007) and Eichenbaum and Fisher (2007) assume full indexation in steady state, thus obtaining a long run vertical Phillips curve. Fernandez-Villaverde and Rubio-Ramirez (2008) obtain estimates for $\xi_p, \xi_w, \delta_p, \delta_w$ starting from flat priors. We do not consider here their reported values because the variant of Calvo pricing they consider imposes a constant elasticity of substitution across goods over the business cycle and overestimates the degree of price inertia. For a criticism of their approach, see Kimball (1995) and Eichenbaum and Evans (2007).
Table 4 – The US economy calibration

<table>
<thead>
<tr>
<th>Fixed parameters</th>
<th>Alternative calibrations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) (2) (3) (4) (5)</td>
</tr>
<tr>
<td>$\beta = 0.96$</td>
<td>θ 0 2 2 2 2</td>
</tr>
<tr>
<td>$A = 0.011$</td>
<td>ξ_p 4.37 4.37 4.37 7 2.47</td>
</tr>
<tr>
<td>$B = 0.075$</td>
<td>ξ_w 0 0 4.37 9.5 4.37</td>
</tr>
<tr>
<td></td>
<td>δ_p 0 0 0.25 0.25 0.25</td>
</tr>
<tr>
<td></td>
<td>δ_w 0 0 0.25 0.25 0.25</td>
</tr>
<tr>
<td>μ^p</td>
<td>1.2 1.2 1.2 1.2 1.2</td>
</tr>
<tr>
<td>μ^w</td>
<td>1 1 1.2 1.2 1.2</td>
</tr>
</tbody>
</table>

Simulations show that for all calibrations the optimal inflation rate is positive and increasing in the sub-sample 1973-1991 (Table 5). In this regard, it is interesting to note that the optimal inflation rate is highly sensitive to the small change in T/Y observed over the two samples. A comparison between calibrations 1 and 2 highlights the role of consumption scale effects in monetary transaction costs. Differences in the price optimization inertia obviously explain differences in the optimal inflation rate. Simulation 3 and 5 seem to provide the best approximations to the estimated targets. In all cases the increase in the public-transfers-to-GDP ratio observed during the high inflation sub-sample 1973-1991 causes an increase in the optimal inflation rate which accounts for a large part of the estimated increase in the Fed target in that period.

Table 5 – Optimal, observed and targeted inflation

<table>
<thead>
<tr>
<th>US economy scenario</th>
<th>observed*</th>
<th>est. target</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) whole sample</td>
<td>4.4</td>
<td>3.2</td>
<td>1.4</td>
<td>2.7</td>
<td>3.4</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>(2) high inf. period (73-91)</td>
<td>6.4</td>
<td>5.6</td>
<td>2.9</td>
<td>3.9</td>
<td>4.3</td>
<td>2.7</td>
<td>5.2</td>
</tr>
</tbody>
</table>

(*) CPI inflation, excluding food and energy.

7 Optimal monetary and fiscal stabilization policies

In this section we investigate whether our characterization of steady-state public expenditures also bears implications for the conduct of macroeconomic policies over the business cycle. SGU (2004a) show that costly price adjustment induces the Ramsey planner to choose a minimal amount of inflation volatility and to select a permanent public debt response to shocks in order to smooth taxes over the business cycle. We compare the SGU (2004a) exercise – where $(T/Y = 0, G/Y = 0.2)$ – with an alternative characterization of the steady state, where $(T/Y = 0.1, G/Y = 0.2)$. In Table 6 we show that when $T/Y = 0.1$ the volatility of both taxes and inflation dramatically increases whereas the strong

19The estimated targets are computed from Fernandez-Villaverde and Rubio-Ramirez (2008). They report the targets for the whole period 3.2% and discuss that the target was 1.6% in the period between 1950-72 and in the 90. From these information one can derive the target for the high-inflation period (1973-91). See also Figures 2.4 and 2.5 in their paper.

20We consider a productivity and a public consumption shocks. Parameter calibrations and properties of stochastic processes are described in Table 2. We compute the second-order approximation using SGU (2004b) routines (See also SGU 2004a: Section 7).
persistence of taxes vanishes. To grasp intuition consider the impulse response functions to a 3% (one standard deviation) increase in government purchases (Figure 7). To sharpen the analysis we assume the shock is serially uncorrelated. Under both scenarios the permanent debt adjustment allows to smooth tax distortions. However, the different magnitudes of the permanent debt and tax adjustments associated to the two cases \(T/Y = 0 \) and \(T/Y = 0.1 \) are also evident. When \(T/Y = 0.1 \), the long-run debt adjustment is reduced by 75%. In this case long-run tax distortions are already relatively large, and the accumulation of debt in the face of an adverse shock becomes less desirable. Instead, the planner finds it optimal to front-load tax adjustment and to inflate away part of the real value of outstanding nominal debt. This explains the surge in inflation volatility reported in Table 6.

Table 621– Dynamic properties of the Ramsey allocation (2nd or. approx.)

<table>
<thead>
<tr>
<th>(T/Y = 0), (G/Y = 0.2)</th>
<th>(T/Y = 0.1), (G/Y = 0.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>st. dev.</td>
</tr>
<tr>
<td>(\tau)</td>
<td>25.19</td>
</tr>
<tr>
<td>(\pi)</td>
<td>-0.16</td>
</tr>
<tr>
<td>(R)</td>
<td>3.82</td>
</tr>
<tr>
<td>(y)</td>
<td>0.21</td>
</tr>
<tr>
<td>(h)</td>
<td>0.21</td>
</tr>
<tr>
<td>(c)</td>
<td>0.17</td>
</tr>
</tbody>
</table>

\[\begin{align*}
T/Y &= 0.1, \ G/Y = 0.2 \\
\tau &= 42.69, \ 2.860, -0.053, -0.110, 0.284, -0.356 \\
\pi &= 1.46, \ 0.962, -0.054, -0.062, 0.304, -0.309 \\
R &= 5.50, \ 0.489, 0.775, -0.790, 0.142, -0.926 \\
y &= 0.17, \ 0.005, 0.823, 1.000, 0.408, 0.884 \\
h &= 0.17, \ 0.003, 0.714, -0.237, 0.699, -0.651 \\
c &= 0.13, \ 0.005, 0.783, 0.851, -0.091, 0.985 \\
\end{align*}\]

21In the table, \(\tau, \pi, R, y, h \) and \(c \) stand for the tax rate, inflation rate, nominal interest rate, output, hours and consumption, respectively.
8 Conclusions.

Since Phelps we know that a positive inflation rate might mitigate the distortions induced by the need to finance government budgets. In contrast with previous research, we show that this argument is relevant given the policy mix between government consumption and transfers that we observe in OECD countries. This result holds for plausible parameterizations of price and nominal wage adjustment costs. In addition, the size of monopolistic distortions, the degree of price and wage indexation, the consumption scale effect in monetary transaction costs unambiguously increase the optimal inflation rate. Unfortunately, empirical evidence on these latter variables is rather limited. In fact estimated DSGE models typically impose markup parameters, assume a vertical long-run Phillips curve and neglect monetary transaction costs.

Our calibrations show that the prediction of a positive inflation rate holds for the US, where the government size is relatively small. A fortiori, our reconsideration of the Phelps conjecture appears even more appropriate when considering countries in the Euro area where the welfare state plays a more important role. In contrast with SGU (2010), who argue that central bank inflation targets are too high, our contribution shows that a 2% target might be too low, at least for countries where the burden of taxation is rather high, such as those
of continental Europe. The explanation for this might be that commitment to a low inflation rate is used to discipline spending decisions, which we assume to be exogenous in our model. In fact several political economy models point out that distorted policymakers' incentives inflate public expenditures.\footnote{See Tornell and Lane (1999) and Persson and Tabellini (2003, 2004).} As shown in Acemoglu et al. (2009), the Ramsey-optimal taxation is substantially affected when taxes and public good provision are decided by a self-interested politician who cannot commit to policies. In a similar vein, further research should investigate how these two frictions, i.e. politicians' self-interest and lack of commitment, may affect the choice of the optimal inflation target.

References

Eichenbaum and Evans (2007).

a medium-scale macroeconomic model” in Gertler M. and K. Rogoff (eds.),

Friedman B.M. and M. Woodford, Handbook of Monetary Economics, forth-
coming.

euro area business cycles: a Bayesian DSGE Approach,” Journal of Applied

stability,” in Solow R.M. and J.B. Taylor, Inflation, unemployment, and

Review, 89: 139-145.